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Chapter 1

Introduction

Science purpose has always been understanding the world and trying to con-
trol it: we humans desire to predict, and sometimes prevent or make happen,
every phenomenon that occurs around us. There are still lots of things that
we can not handle, also because behind every new discovery stand lots of
never studied evolutions and knowledges.

Everybody knows that in mankind history there are some specific events
that changed completely the way of thinking and living. One of the most im-
portant revolution of this kind concerns the advent of electronic computers:
thanks to Alan Turing and his successors now we can overcome the limitation
of human brain and reach results that no one would have imagined. Aside
from common technologies, like personal computers and smartphones, by
which everybody has possibilities never thought before, this wind of change
brought a big boost in every scientific field. Now it is possible make simu-
lations of every kind of environment and even create new form of life with
behaviours similar to the real ones. With these instruments we can try to
simulate and study situations difficult to examine in real life or prevent fu-
ture developments of current problems.

Cellular automata are one of the most used tool in these situations. They
were introduced by von Neumann in the ’50s to resolve a problem of self-
replicating automata and they quickly evolved in the following year: in ’60s
they were studied as particular dynamical systems, in ’70s Conway intro-
duced his renowned Game of Life and from the ’80s to the present day, thanks
especially to Wolfram, they took a role into every discipline of science. Now,
thanks to their versatility, you can find a sign of cellular automata in biol-
ogy, chemistry, Earth science, physics, informatics and lots of other fields of
study.
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CHAPTER 1. INTRODUCTION 2

A connected but different approach is given by genetic algorithms. They
were invented in the ’60s by Holland that wanted to study the phenomenon
of adaptation and implement it into computer systems: he took inspiration
by Darwin’s natural selection and obtained a procedure that now is applied
particularly in computer science to reach better results in optimization and
search problems.

Since structures of cellular automata and genetic algorithms are similar, one
can easily think to merge them in a new kind of instrument that combine
the advantages of both and can be used to find new interesting study cases.
Hence we introduce our system: a bi-dimensional cellular automata that
works with rules of genetic algorithms. Our purpose is to explain its be-
haviour and make this new procedure available to everyone, in the hope that
today’s prolific community will find useful applications, especially in other
disciplines.



Chapter 2

Cellular automata

Here we want to introduce some simple notions about cellular automata.
After considering the generic definition and some important features, we will
see how a cellular automaton can be mathematically formalized. In particular
we will concentrate on one-dimensional cellular automata, because of their
simple and explicative behaviour, and on bi-dimensional cellular automata,
since our work is focused on them. See [Ilac01] and [Wolf02] for more details
and specifications.

2.1 Definition and characteristics

Cellular automata were first introduced in the early ’50s by John von Neu-
mann that wanted to create simple models of biological self-reproduction. In
the years the study of these systems has generated great interest, thanks to
their ability to develop lots of very complex patterns of behaviour, starting
with relatively simple well defined rules. Another important achievement is
given by the coherence between them and real systems, especially in some
essential features of complex self-organizing cooperative behaviour.

Definition 2.1.1. Cellular automata (CA) are deterministic mathematical
systems characterized by:

• a discrete lattice of simple homogeneous components called cells ;

• finite number of discrete states taken by cells;

• an intrinsic rule that at each discrete unit of time determines interac-
tions between every cell and its neighbourhood.

3
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Despite the simplicity of these rules, such systems are capable of extremely
complicated behaviour. Thanks to that, besides the direct work in mathe-
matics and computer science, there have been applications of CA in lots of
disciplines. Some specific examples of phenomena that have been modelled
by CA include fluid and chemical turbulence, plant growth, DNA evolution,
the propagation of infectious diseases, social dynamics, forest fires and pat-
terns of electrical activity in neural networks.

2.2 System formalization

Although each CA is defined or selected to fit the requirements of a particular
model, the definition of any of these specific systems requires the specification
of the following generic characteristics:

• discrete cellular state space L
the discrete lattice of cells that constitutes the structure of the CA.
It can be one-dimensional with simple shaped cells, two-dimensional
with every kind of cells shape (like rectangular or hexagonal), three-
dimensional with the same liberty on cells form, or even random;

• local value space Σ
a finite set of different values Σ ≡ {0, 1, 2, . . . k − 1} that every cells
in L can assume. We can distinguish each cell using its position in L,
indicated by a multi-index, and consider the value of the cell i at the
instant t given by

σi(t) ∈ Σ (2.2.1)

Usually Σ is any finite commutative ring (like Zk). If L is a finite lattice
of N cells, then the total number of global states is finite (given by kN);

• boundary conditions
although CA are assumed to live on infinite lattices, computer simula-
tions must necessarily run on finite sets. For a one dimensional lattice
with N cells it is common to use periodic boundary conditions, in which
σN+1 = σ1 (as in a ring), or to consider two extra cells, over the bound-
aries, with fixed value 0. Similarly, in two dimensions, it is usual to
have the dynamics take place on a torus, so that if the lattice is M×N
we have σM+1,j = σ1,j and σi,N+1 = σi,1, or to consider a boundary with
fixed value 0, or also to have a boundary on two sides and the link on
the other two (like a cylinder). Anyhow boundary conditions play an
important role in shaping the form of the resulting dynamics;
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• dynamical rule Φ
the evolution of the CA is described by a function Φ : Σn −→ Σ where
n specifies the number of cells in the chosen kind of neighbourhood.
The transition rule is most generally written as

σi(t+ 1) = Φ(σj1(t), σj2(t), . . . , σjn(t)) (2.2.2)

where, for all k ∈ {1, 2, . . . n}, jk ∈ N (i) neighbourhood of the cell i.
One iteration step of the dynamical evolution is achieved after the
simultaneous application of this rule to each cell in the lattice L.

2.2.1 One-Dimensional CA

In one-dimensional CA we can choose an arbitrary range r that determines
the dimension of neighbourhoods. Given that the dynamic rule becomes

σi(t+ 1) = Φ(σi−r(t), . . . , σi(t), . . . , σi+r(t)) (2.2.3)

If there are N cells, after choosing some specific initial global state

{σ1(0), σ2(0), . . . , σN(0)} (2.2.4)

the temporal evolution of this CA is then given by the simultaneous appli-
cation of Φ to each of the cells.

Example 2.2.1. Considering neighbourhoods of range 1, we can study the
simplest one-dimensional CA called elementary cellular automata by Stephen
Wolfram, who has extensively studied their amazing properties. Their be-
haviour can be completely described by simple rules given by choosing one
of the two possible results for each of the 23 = 8 possible neighbourhoods.
Hence there are only 28 = 256 possible elementary CA.
Each neighbourhood is an ordered list of 3 bits so we can consider the asso-
ciate decimal number n and, calling the relative result rn, we can describe
the used rule with the integer given by

8∑
n=1

nrn (2.2.5)

In the figure 2.1 we can see rule 30 (00011110) and its first 20 generations
starting with a single alive cell (each line is a new generation). This cellular
automata is of special interest because Wolfram in 2002 proved that it is
chaotic and hence it can be used as random number generator.
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(a)

(b)

Figure 2.1: (a) all possible one-dimensional neighbourhoods with relative results
decided according to rule 30: they are, in order, 0 0 0 1 1 1 1 0; (b) first 20 iterations
of rule 30.

2.2.2 Two-Dimensional CA

The extension of generic CA systems to two dimensions is significant for two
reasons: first, the extension brings with it the appearance of many new phe-
nomena involving behaviours of the boundaries of two-dimensional patterns
that have no simple analogues in one-dimension. Secondly, two-dimensional
dynamics permit easier comparison to real physical systems.

There is a variety of different lattices and neighbourhood structures that can
be used in two-dimensional CA. An important factor is the shape of cells:
regular polygon are usually used (like triangular, squared or hexagonal) but
one can also consider irregular shapes providing that every cell has the same
number of edges (like Penrose tiling, see [OwSt10]).

Regarding neighbourhoods there are two simple configurations that are gen-
erally used and can be adapted to every choice of cells shape:

• von Neumann neighbourhood (figure 2.2(a)), consisting of the center
cell and all the cells which have a common edge with it;

• Moore neighbourhood (figure 2.2(b)), consisting of the center cell and
all cells which have at least one common vertex with it.

Talking about the dynamic rule, the equation (2.2.2) is so generic that can
describe an impressive variety of complex behaviours. You can see a simple
but really important example of two-dimensional CA in chapter 5.
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(a)

(b)

Figure 2.2: (a) von Neumann neighbourhoods with different cell shapes; (b) Moore
neighbourhoods in the same cases.

2.3 Meaningful approaches

Now we want to provide a general list of what are some of the most im-
portant and interesting generalizations of the basic CA systems. As the
following ones, the purpose of the system that we will introduce in chapter
4 is to improve the simple concept of cellular automaton in order to obtain
new powerful behaviours.

Reversible rules
Almost any rule will define a non-invertible dynamic, so that it will be im-
possible to determine what local configuration at the previous time step gave
rise to a particular value at the current step. Since physical dynamical laws
are microscopically reversible any simulation of real physical systems can be
made only if the underlying CA is itself reversible. Hence the best way to
write down a general form for such rules is given by

σi(t+ 1) = [Φ(σj1(t), . . . , σjn(t))− σi(t− 1)](mod k) (2.3.1)

where Φ is a generic dynamic rule and, for all k ∈ {1, 2, . . . n}, jk ∈ N (i). For
such rules any value of σi can be determined if the values at site i are known
for two consecutive time steps, therefore the total information contained in
the initial state has to be preserved for all time.

Probabilistic CA
Deterministic results of dynamic rules may be replaced with specifications of
the probabilities of value assignments:

P
(
{σi(t+ 1) = α, given σi(t) and some values in N (i)}

)
(2.3.2)

valuing it on every α ∈ Σ. Instead of studying particular evolutions of
arbitrary initial states, such rules determine ensembles of CA trajectories.
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Non-homogeneous CA
Every CA rule defined so far was homogeneous which means that each cell
of the system evolves according to the same rule. The simplest example
of non-homogeneous CA is characterized by two different rules which are
randomly distributed throughout the lattice but it is also possible to study
the extreme version in which the lattice is randomly populated with all 22k

possible boolean functions of k inputs.

Structurally dynamic CA
Another possibility is to make the lattice itself changing with the dynamical
evolution of the system. Considering changing neighbourhoods N (i, t) and
calling A(L, t) the adjacency matrix of the lattice L at the instant t, the
system to be studied is given by{

σi(t+ 1) = Φ
[
σj(t) | j ∈ N (i, t), ai,j(t) ∈ A(L, t)

]
ai,j(t+ 1) = Ψ

[
σj(t) | j ∈ N (i, t), ai,j(t) ∈ A(L, t)

] (2.3.3)



Chapter 3

Genetic algorithms

Let us now take a look at genetic algorithms and how do they work. Starting
from their origins, we begin with a biological approach that brings us to the
specific definition. In the second part we will observe how genetic algorithms
mathematically work and the causes of their power in problem solving. To
see in deep these argumentations you can follow [Gold89].

3.1 First ideas and definitions

As we said in chapter 1, genetic algorithms were invented by John Holland
in the ’60s when he introduced an algorithm based on natural selection and
genetic operators like crossover and mutation. His goals were mainly two:
to summarize and explain the adaptive process of natural systems and to
reproduce the important mechanisms of this process in artificial systems.

Since genetic algorithms were inspired by natural systems, let us start with
some simple biological definitions. All living organisms consist of cells, and
each cell contains the same set of one or more chromosomes (strings of DNA)
that determines the characteristics of the organism. A chromosome can be
divided into genes each of which is located in a particular position, called
locus, and encodes a particular trait of the organism. A natural system can
be seen as a population of chromosomes and during its evolution there are
generally three step. First an operator called fitness function associates a
measure of goodness to each chromosome: the fitter the chromosome, the
more times it can be selected by another one to reproduce. During the
coupling a locus is randomly chosen and the sub-sequences before or after
that locus are exchanged between the couple of chromosomes to create two
offsprings. Finally, with some very small probability, mutation may occur so
that some of the genes in a chromosome randomly change.

9
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Definition 3.1.1. A genetic algorithm (GA) is a higher-level procedure de-
scribed by these features:

• population of chromosomes ;

• reproduction according to a fitness function;

• crossover to produce new offspring;

• random mutation of new offspring.

Although their simple definition, GA are really useful in optimization and
search problems, especially thanks to qualities like:

1. easy and fast operators;

2. robust processing (high balance between efficiency and efficacy);

3. the use of a coding of the parameter set instead of the parameters
themselves;

4. the evolution of a population of points and not of a simple point;

5. the independence from derivatives or other auxiliary knowledge;

6. the use of probabilistic transition rules instead of the deterministic
ones.

Every system that presents the characteristics in definition 3.1.1 is a genetic
algorithm but now we want to concentrate on one of the simplest models,
directly inspired by biological ones. It considers bit strings of fixed length l
as chromosomes (in which locus can assume the values 0 or 1), representing
the real values of the system, and its operators work as follows:

• the reproduction operator select strings that enter into a mating pool
for the following step. It may be implemented in lots of way and one
of the easiest is make a weighted choice according to the fitness values,
so that more highly fit strings have a higher number of offspring in the
succeeding generation;

• given the selected strings they are randomly paired and the crossover
begins: for each couple a random position k in the range [1, l − 1] is
selected and two new strings are created by swapping all characters in
positions k + 1, . . . , l between the initial strings;

• finally, with really low probability, one of the characters of the resulting
string may change state (from 0 to 1 or vice versa) and, after that, we
have our new population.
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3.2 Mathematical foundations

Even though the operation of GA is remarkably straightforward, this pro-
cessing of strings really causes the implicit processing of the system. To see
how this works we need to introduce some simple notation.

In the GA on which we want to focus, strings are constructed over the bi-
nary alphabet V = {0, 1}. We will refer to them by capital letters while their
individual characters will be indicated with lower-case letters subscripted by
their position, so that a generic string of length l will be represented as:

A = a1a2 . . . al (3.2.1)

Meaningful genetic search requires populations of strings, indicated with bold
capital letters, which depend on time, hence we have

A(t) = {A1, A2, . . . , An} (3.2.2)

Since important similarities among highly fit strings can help guide a search,
Holland introduced schemata: similarity templates describing subsets of
strings with similarities at certain string positions. Practically a schema
H is a string constructed over the alphabet V ∗ = {0, 1, ∗} where the addi-
tional symbol ∗ matches either a 0 or a 1 at a particular position. A string A
as in (3.2.1) is an example of the schema H = h1h2 . . . hl if ∀i ∈ {1, 2, . . . , l}

ai = hi = 0 ∨ ai = hi = 1 ∨ hi = ∗, ai ∈ V (3.2.3)

Considering binary strings of length l there are 3l possible schemata defined
over them and if a population contains n strings there are at most n · 2l

schemata represented in it, because each string is an example of 2l schemata.

We can characterize a schemata through the following properties:

• the order of a schema H, denoted by o(H), is the number of his fixed
positions (number of 0s and 1s);

• if H is a schema with o(H) > 0, his defining length, denoted by δ(H), is
the difference between the last and first specific (non ∗) string position.
Clearly it may assume values from 0 to l − 1.

Example 3.2.1. Considering the string of length 6 A = 100101 two of the
schemata of which is an example are H1 = 1∗∗∗∗∗ and H2 = ∗00∗∗1. Clearly
the second one is more specific and spans more of the total string length: we
have o(H1) = 1 and δ(H1) = 0 while o(H2) = 3 and δ(H2) = 6− 2 = 4.
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Now we want to study the individual and combined effect of GA operators
on schemata represented by a population of strings: suppose at a given time
step t there are m examples of a particular schema H within the population
A(t) as in (3.2.3). Hence we will write m = m(H, t). During reproduction a
string Ai ∈ A(t) gets selected with probability

pi =
fi∑n
j=1 fj

(3.2.4)

where, for all j ∈ {1, 2, . . . , n}, fj is the fitness value of the string Aj.
After reproducing a new population of n strings we expect that a particular
schema grows as the ratio of the average fitness of the schema f(H) to the
average fitness of the entire population f . In fact we have

m(H, t+ 1) = n ·
m(H,t)∑
i=1

pi = n · f(H) ·m(H, t)∑n
j=1 fj

= m(H, t) · f(H)

f
(3.2.5)

It is important to observe that this expected behaviour is carried out with
every schema contained in the population in parallel.

During the crossover it is easy to see that a schema survives when the cross
site falls outside the defining length, hence the survival probability is

ps = 1− δ(H)

l − 1
(3.2.6)

Since crossover is itself performed by random choice, say with probability pc,
the survival probability becomes

ps ≥ 1− pc ·
δ(H)

l − 1
(3.2.7)

Finally we have mutation: supposing that its probability is pm, in order for
a schema to survive all of its fixed positions must themselves survive. Since
a single character survives with probability 1 − pm the scheme survive with
a probability of (1− pm)o(H) ∼ 1− o(h) · pm because pm << 1.

Hence the combined effect on the expected number of examples that a schema
H receive in the next generation is given by

m(H, t+ 1) ≥ m(H, t) · f(H)

f
·
[
1− pc ·

δ(H)

l − 1
− o(h) · pm

]
(3.2.8)

This conclusion is called the Fundamental Theorem of Genetic Algorithms
and let us see that short, low-order, above-average schemata receive expo-
nentially increasing trials in subsequent generations.
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3.3 A simple example

Now you can see how genetic algorithms work practically. We will consider
a little population and a simple fitness function so that computation will not
become too complex and long.

Our chromosomes are bit strings of length 5, the population size is 4 and the
fitness function f is simply the square of the decimal number x corresponding
to the string. The reproduction operator will choose 4 strings according the
approximation of f(x)/f . For the crossover we use the method explained in
the previous sections with pc = 1 and we choose the mutation probability
pm = 0, 001. In parallel we study the evolution of two schemata.

String x f(x) f(x)/f Count Reprod. Offspring x f(x)
01101 13 169 0,58 1 0110|1 01100 12 144
11000 24 576 1,97 2 1100|0 11001 25 625
01000 8 64 0,22 0 11|000 11011 27 729
10011 19 361 1,23 1 10|011 10000 16 256
Min 64 144
Average 293 439
Max 576 729

Before Rep. After Rep. After All
Schema m(H) f(H) Exp. m(H) m(H) Exp. m(H) m(H)
1 ∗ ∗ ∗ ∗ 2 469 3,20 3 3,20 3
∗ 1 0 ∗ ∗ 2 320 2,18 2 1,64 2
1 ∗ ∗ ∗ 0 1 576 1,97 2 0,00 0

As you can see after only one step our system has already improved: in fact
minimum, average and maximum fitness values are increased compared to the
initial ones. Talking about schemata the estimations made in the previous
section are completely respected.



Chapter 4

Cellular evolution

Here we introduce our cellular automaton inspired by genetic algorithms.
This work started in 2015 with the brilliant idea of my supervisor of merge
the two concepts: the results were really surprising and fascinating. Now
we want to continue this approach optimizing the process and studying its
behaviour more deeply. In this chapter we want to specify our implementa-
tion first discursively, explaining how we linked cellular automata and genetic
algorithms, and then using a pseudo-code, so that everyone can try to im-
plement our idea.

4.1 A new idea and its implementation

Starting by the definitions given in the previous chapters, it is easy to see
that cellular automata and genetic algorithms are closely correlated. Hence
we want to define Cellular Evolution, a dynamic system characterized by the
structure of a cellular automata and a behaviour similar to that of genetic
algorithms. The purpose is to obtain a new kind of process that can mix
together the advantages of cellular automata and genetic algorithms, and
maybe find some interesting and useful results.

While in simple genetic algorithms each cell evolves according to a dynamical
rule based only on the states of cells in its neighbourhood (as in (2.2.2)), now
we want a fitness function that allow each cell to select the best mate in its
neighbourhood, a crossover operator that defines couples interactions and
the resulting evolution of cells states and a final possible mutation.

As every kind of process seen before, given an initial population, it evolves
in discrete time steps.

14
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Our principal implementations use bi-dimensional lattices of squared cells,
but it is possible to generalize the process to every kind of structure. In
order to obtain a cellular automata, during computations of fitness values and
the crossover operations we still consider limited neighbourhoods instead of
mating pools as in GA. In particular we will use Moore neighbourhoods but
it is a completely indifferent choice. We will study every kind of boundary
condition and we also want to consider fixed nodes grids.

The local value space Σ is, as in section 2.2, a finite set of different values, not
necessarily numeric, assumable by each cell. As in CA, we usually consider
a set of numeric values like Zk. We maintain the notation σi(t) for the state
of cell i at the instant t, as introduced in 2.2.1.

As we said, the innovative part concerns the dynamical rule. Since it is
inspired by genetic algorithms, we can divide this process in three steps:

• given a cell i ∈ L and its neighbourhood N (i) = {j1, j2, . . . , j9} we call
the configuration of i at time t

Ci(t) = (σj1(t), σj2(t), . . . , σj9(t)) (4.1.1)

and we consider a fitness function that takes these configurations and
returns values in an ordered set F containing possible fitness values

f : Σ9 −→ F , f(Ci(t)) = fi(t) (4.1.2)

In this way, at each time step, every cell receives a fitness value that
depends on states of the cells in its neighbourhood. After that, each
cell i selects randomly j , one of the fittest cells in N (i), to interact with
it. Hence fittest cells have higher chances of being chosen for couplings;

• now that each cell has a mate it is time for the crossover. Since we
want to keep the system as generic as possible we consider the following
operator that takes states and fitness values of the two cells and returns
the new value of the cell i :

χ : (Σ×F)2 −→ Σ , χ
(
σi(t), fi(t), σj(t), fj(t)

)
= σi(t+ 1) (4.1.3)

Unlike what happens in genetic algorithms, the result of the crossover
will be only one offspring that take the place of cell i , otherwise the
system would not be a cellular automata;

• finally we have mutation that changes randomly the state of some cells,
as always with a very small probability.
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The resulting process is still a cellular automaton because composing the part
of selection with the crossover operator and the mutation step we obtain a
dynamic rule. We observe that, despite during each single step we considered
Moore neighbourhoods, the dynamic rule of our system seen as CA uses
different neighbourhoods: for the cell i it takes the states of the cells in

N (i) =
⋃

j∈N (i)

N (j) (4.1.4)

and returns the new state of i . Hence the neighbourhood used by the dynamic
rule of Cellular Evolution is the one in figure 4.1.

Figure 4.1: Neighbourhood used by Cellular Evolution as CA.

4.2 The algorithm step by step

We implemented Cellular Evolution in two different languages: first using
Matlab, that allows us to obtain a powerful and fast way to run our process,
and at a later time we create a little program in Python, because it is open-
source and hence gives the possibility to everyone to try our system. Our
works can be found in [CEDr17] and are completely open-source.

Trying to keep the argumentation as generic as possible, now we use a pseudo-
code to describe our methods of implementation. Let us start with the prac-
tical definition of the used operators:

• the initial population is given randomly or inserted by the user and has
to be a matrix pop of size m × n with values in the range of possible
state values [0,1,...,nstates-1]. It will evolve for ngen steps and
can be customized with the following parameters:

– a variable type describes the shape of our world: type=0 means
toroidal world, type=1 closed, type=2 stands for a vertical cylin-
der shape (closed on upper and lower sides) and type=3 is for
horizontal cylinder (closed on left and right sides);

– the presence of a fixed nodes grid, that is given by a boolean
variable grid and, if grid=1, the size of its meshes is specified by
two numeric values called r and c.
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• the fitness function has to be an operator fitfun that takes the state
values of the nine cells in a neighbourhood and returns an element of
[0,1,...,nfit-1] as fitness values for the center cell. We can consider
a function that at each step takes the matrix pop and returns a matrix
fit of dimensions m × n that contains all fitness values. Each cell
selects the fittest mate in its neighbourhood and, in case of cells with
same fitness value, it chooses randomly one of them using a seed s;

• the crossover operator that describes interactions between cells (consid-
ering states and fitness values) can be seen as a 4-dimensional matrix
co of size nstates × nfit × nstates × nfit containing the result of
every possible combination of two states and two fitness values;

• regarding the mutation operator it will depends on two variables: fmut
and pmut that give respectively its frequency (how many steps pass
between a mutation and another) and the probability of its occurring.

Now that we have explained all the used variables we can show the entire
algorithm and, afterwards, see what every step does.

1) define function: N(M) = southshift(M)

define function: S(M) = northshift(M)

define function: W(M) = eastshift(M)

define function: E(M) = westshift(M)

2) define function: shuffle(M,seed) = permuteelements(M,seed)

3) rand = [0:8]

4) for {t in [1:ngen]} do

5) fit = fitfun(pop)

6) print(pop), print(fit)

7) rand = shuffle(rand,s)

8) for {{x in [0:m-1]} and {y in [0:n-1]}} do

9) pp[rand[0],x,y] = pop[x,y]

pp[rand[1],x,y] = N(pop)[x,y]

pp[rand[2],x,y] = N(E(pop))[x,y]

pp[rand[3],x,y] = E(pop)[x,y]

pp[rand[4],x,y] = E(S(pop)[x,y]

pp[rand[5],x,y] = S(pop)[x,y]

pp[rand[6],x,y] = S(W(pop))[x,y]

pp[rand[7],x,y] = W(pop)[x,y]

pp[rand[8],x,y] = W(N(pop))[x,y]
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10) ff[rand[0],x,y] = fit[x,y]

ff[rand[1],x,y] = N(fit)[x,y]

ff[rand[2],x,y] = N(E(fit))[x,y]

ff[rand[3],x,y] = E(fit)[x,y]

ff[rand[4],x,y] = E(S(fit))[x,y]

ff[rand[5],x,y] = S(fit)[x,y]

ff[rand[6],x,y] = S(W(fit))[x,y]

ff[rand[7],x,y] = W(fit)[x,y]

ff[rand[8],x,y] = W(N(fit))[x,y]

11) for {{x in [0:m-1]} and {y in [0:n-1]}} do

12) best[x,y] = min(i | ff[i,x,y] = max(ff[[0:8],x,y]))

selp[x,y] = pp[best[x,y],x,y]]

self[x,y] = ff[best[x,y],x,y]]

13) if {{type = 0} and {grid = 0}} then

14) for {{x in [0:m-1]} and {y in [0:n-1]}} do

15) pop[x,y] = co[pop[x,y],fit[x,y],selp[x,y],self[x,y]]

16) if {pmut > 0} then

17) if {mod(t,nmut) = 0} then

18) if {random(0,1) < pmut} then

19) pop[x,y] = int(random(0,nstates-1))

20) if {{type = 0} and {grid = 1}} then

21) for {{x in [0:m-1]} and {y in [0:n-1]}} do

22) if {{mod(x,r) > 0} or {mod(y,c) > 0}} then

23) pop[x,y] = co[pop[x,y],fit[x,y],selp[x,y],self[x,y]]

24) if {pmut > 0} then

25) if {mod(t,nmut) = 0} then

26) if {random(0,1) < pmut} then

27) pop[x,y]=int(random(0,nstates-1))

28) if {{type = 1} and {grid = 0}} then

29) for {{x in [1:m-2]} and {y in [1:n-2]}} do

30) pop[x,y] = co[pop[x,y],fit[x,y],selp[x,y],self[x,y]]

31) if {pmut > 0} then

32) if {mod(t,nmut) = 0} then



CHAPTER 4. CELLULAR EVOLUTION 19

33) if {random(0,1) < pmut} then

34) pop[x,y] = int(random(0,nstates-1))

35) if {{type = 1} and {grid = 1}} then

36) for {{x in [1:m-2]} and {y in [1:n-2]}} do

37) if {{mod(x,r) > 0} or {mod(y,c) > 0}} then

38) pop[x,y] = co[pop[x,y],fit[x,y],selp[x,y],self[x,y]]

39) if {pmut > 0} then

40) if {mod(t,nmut) = 0} then

41) if {random(0,1) < pmut} then

42) pop[x,y]=int(random(0,nstates-1))

43) if {{type = 2} and {grid = 0}} then

44) for {{x in [1:m-2]} and {y in [0:n-1]}} do

45) pop[x,y] = co[pop[x,y],fit[x,y],selp[x,y],self[x,y]]

46) if {pmut > 0} then

47) if {mod(t,nmut) = 0} then

48) if {random(0,1) < pmut} then

49) pop[x,y] = int(random(0,nstates-1))

50) if {{type = 2} and {grid = 1}} then

51) for {{x in [1:m-2]} and {y in [0:n-1]}} do

52) if {{mod(x,r) > 0} or {mod(y,c) > 0}} then

53) pop[x,y] = co[pop[x,y],fit[x,y],selp[x,y],self[x,y]]

54) if {pmut > 0} then

55) if {mod(t,nmut) = 0} then

56) if {random(0,1) < pmut} then

57) pop[x,y]=int(random(0,nstates-1))

58) if {{type = 3} and {grid = 0}} then

59) for {{x in [0:m-1]} and {y in [1:n-2]}} do

60) pop[x,y] = co[pop[x,y],fit[x,y],selp[x,y],self[x,y]]

61) if {pmut > 0} then

62) if {mod(t,nmut) = 0} then

63) if {random(0,1) < pmut} then
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64) pop[x,y] = int(random(0,nstates-1))

65) if {{type = 3} and {grid = 1}} then

66) for {{x in [0:m-1]} and {y in [1:n-2]}} do

67) if {{mod(x,r) > 0} or {mod(y,c) > 0}} then

68) pop[x,y] = co[pop[x,y],fit[x,y],selp[x,y],self[x,y]]

69) if {pmut > 0} then

70) if {mod(t,nmut) = 0} then

71) if {random(0,1) < pmut} then

72) pop[x,y]=int(random(0,nstates-1))

Obviously this language has to be translated depending on the program used,
but this list of passage may be useful to understand what the system does
during a run. Let us take a look at each step of the algorithm.

Initialization
During the first two steps we have to define some functions that will be useful
in the next steps. The functions in step 1 are simple shift of matrix elements
in the indicated direction. We name them with the opposite letter for a good
reason: for example N is the south shift because in the position (i,j) the
matrix N(M) must have the value located in the position above (i,j) in M.
In step 2 we define a random shuffle (depending on a seed) of the elements of
a vector and in step 3 we consider an array rand containing all the positions
in neighbourhoods.

Defining fitness values
In step 4 the main cycle starts. The first thing to do is define the fitness
value of each cell (step 5). After that we can print the images of the current
population and fitness matrices (step 6).

Selection
This operation occupies steps 7-12. First we update rand shuffling it with
the given seed s (step 7). This will randomize the choice of the fittest cell.
Now we define two three-dimensional matrices of size 9 × m × n (steps
8, 9, 10) that allows us to detect more easily the fittest cell: each vector
pp[[0:8],x,y] contains the states in the neighbourhood of the cell (x,y)
while each ff[[0:8],x,y] contains their fitness values (in both cases in the
random order defined by rand). During steps 11 and 12 we select the best
fitness value for every cell and we determine the matrices of selected states
(selp) and selected fitness values (self).
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Crossover and mutation
For these operators there are eight different cases, depending on choices of
(type,grid). The only difference between them is a set of cells that do
not evolve (that includes border ones and/or grid ones). In particular case
(0,0) is studied in steps 13-19, case (0,1) during steps 20-27, (1,0) in
steps 28-34, (1,1) in steps 35-42, (2,0) in steps 43-49, (2,1) in steps 50-57,
(3,0) in steps 58-64 and finally case (3,1) during steps 65-72. Each case
is different because of the cells that can evolve. After the selection of those
ones (first two or three steps depending on the case), they evolve according
to the value in the crossover matrix: cell (x,y) takes the state in position
(pop[x,y],fit[x,y],selp[x,y],self[x,y]) in the matrix co. Finally the
last four steps of each case determine, if mutation is possible, its results.

Some interesting and wonderful results of this process can be seen in the last
chapter of this paper.



Chapter 5

Game of Life and its
implementation

As we told in chapter 2 here we want to introduce a special example of two-
dimensional cellular automaton: Conway’s Game of Life (see [Gard70]). We
will see its definition, some characteristics of its behaviour and how to prove
its most important property. After this introductory part, we will show one
of the biggest results reached with our system: it is possible to implement
Conway’s rule using Cellular Evolution. At the end of this chapter there
will be a presentation of two cellular automata, created by us, describing
two possible interactions between two lives in the same environment. We
will conclude with an explanation of how to implement them with Cellular
Evolution, in order to let you understand its potentiality.

5.1 Rules and behaviour

This is probably the most famous and studied cellular automaton, thanks
to its simple definition, its evolution difficult to predict and the emerging
of interesting structures and complex systems. The first two characteristics
were exactly the ones that, in the ’60s, John H. Conway wanted for his rule.
To this end, Conway concentrated on meeting the following three criteria:

• it should be difficult to prove that a pattern grows without limit;

• not all simple initial states should immediately yield trivial final states;

• there should exist simple patterns that evolve for many iterations before
settling into a simple final state.

22
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After a great deal of experimentation, Conway finally settled on the well
known two-dimensional rule.

Definition 5.1.1. Game of Life (GoL) is a two-dimensional cellular automa-
ton that evolves in a squared lattice of cells binary-valued and uses Moore
neighbourhoods. Its rules are the following ones:

• the birth of a cell (passage from 0 to 1) occurs if it has exactly three
living cells in its neighbourhood;

• a cell encounters death (passage from 1 to 0) for isolation if it has less
than two living cells in its neighbourhood, or for overcrowding when
they are more than three;

• a living cell survives if it is surrounded by two or three living cells.

We can write these rules with the following formalism:

σi(t+ 1) = ΦGoL[σj(t) | j ∈ N (i)] =

=


1 if

∑
j∈N (i) σj(t) = 3,

σi(t) if
∑

j∈N (i) σj(t) = 4,

0 otherwise.

(5.1.1)

What distinguishes this system from all the others and makes this rule truly
remarkable is, as we will see, that GoL has been proven to be capable of
universal computation. The principal consequence of this statement is that
GoL can carry out arbitrary algorithmic procedures, so that it can be used in
place of every standard digital computer. Furthermore this property gives us
an important information about GoL dynamical complexity: this rule is ac-
tually capable of displaying arbitrarily complicated behaviour and generally
there is no short-cut route to the final outcome of its evolution. Hence, in
the past years, various initial configurations were analysed and catalogued,
starting obviously from the simplest. Now, in order to understand the be-
haviour of the most famous CA, we will see some of these structures.

Three live cells initial states
Because live cells survive only if surrounded by 2 or 3 other live cells and
dead cells become alive only if surrounded by exactly three live cells, initial
states consisting of an isolated cell or two adjacent live cells are obviously des-
tined to die after a single step. Hence we start with three adjacent live cells.
Excluding possible symmetries and rotations there are only two cases: one
returns a stable pattern called block while the other is a 2-period oscillator
called blinker (see figure 5.1).
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Figure 5.1: First steps of the possible three live cells initial states: on the left we
obtain a block while on the right we can see a blinker.

Stable and periodic patterns
As we have just seen in GoL there are patterns that remain unchanged un-
less other structures come closer to them and other that, if not disturbed,
maintain a periodic behaviour. In figure 5.2 you can see some of these cases.

(a) (b)

(c)

(d)

(e)

Figure 5.2: (a) stable patterns with four cells: a block and a tub; (b) a boat, the
only stable five cells structure; (c) stable six cells patterns; (d) stable seven cells
patterns; (e) some two-period oscillators: a beacon, a clock and a toad.

Four live cells initial states
As you can see in figure 5.3, giving four initial live cells there are five possible
configurations: one is the block (introduced previously), three of them after
some steps return a stable pattern already seen in figure 5.2 called beehive
and the last one after nine evolutions gives us a set of four blinkers.

Five live cells initial states
Of the twelve possible initial states with five live cells, five yield the null state
within four steps, two reach a stable state and four lead to the same group of
four blinkers seen in figure 5.3. However, in marked contrast to these simple
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Figure 5.3: Evolution of four live cells patterns: the block, the beehive reached
by three initial patterns and the bottom one that returns four blinkers.

behaviours, the remaining pattern, called the R-pentamino, evolves in a con-
siderably fascinating way: in figure 5.4 we choose to show only its situation
every ten steps, but its instability is clearly visible. This behaviour continues
for 1103 steps, marking a time beyond which all of the various local patterns
remain forever isolated and non-interacting.

Gliders
During the development of the R-pentamino a new kind of pattern starts
running diagonally at generation 69 and we can see one of its frame in the
last slide of figure 5.4. It is called glider because after two steps it produces
a pattern that is both reflected in a diagonal line and down displaced by one
site so that patterns separated by two steps are related by a glide reflection.
Consequently the original pattern is reproduced in a diagonally displaced
position every four iterations.

Glider shuttle
An interesting combination of distinct patterns consists of a single glider and
two identical and stationary but oscillatory 12 live-cell patterns. Since the
combination effect is that the glider continually shuffles its way from one to
the other of these larger patterns, this pattern is called glider shuttle.

Eaters
A fascinating structure with the ability to destroy nearby patterns without
damaging the integrity of its own form, is called the eater. For example in
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Figure 5.4: The evolution of the R-pentamino: steps 0, 10, 20, 30, 40 ,50, 60 and
70. In this last one a glider is visible in the bottom-right corner.

figure 5.7 we can see how an eater kills a glider in four time steps and re-
pairs itself in the process. Another interesting behaviour is what happens
when two eaters are made to attack each other: they produce an oscillating
pattern in which each takes a ’bite’ out of the other and quickly repairs it-
self before taking another bite. Although not everything can be successfully
eaten by this pattern (for example the block is indestructible), the number
of digestible patterns is impressively large.

Glider-glider collisions
While results of collisions with eaters are easily predictable, a glider-glider
collision may have surprisingly different results: in all 73 distinct two-glider
collisions are possible. In figure 5.8 we concentrate on two particular cases
that we will use later: an annihilation reaction, in which both the gliders
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Figure 5.5: A glider in one of its shifts: after two steps it is diagonally reflected
and shifted down by one site while after four steps its diagonal shift is completed.

Figure 5.6: A glider shuttle in which a glider is bounced between two oscillators
of period 15 called pentadecathlon.

Figure 5.7: A glider that encounters an eater and is destroyed while the eater
repairs itself.

Figure 5.8: An annihilation and a kickback reaction in a glider-glider collision: in
the first case both gliders die, in the second one a glider dies while the other one is
bounced back.

die, and another in which one of the original gliders disappears and the other
emerges out of the reaction zone shifted in space by half a diagonal lattice
position and moving in the reversed direction. From this behaviour this sec-
ond collision is called kickback reaction.
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Glider Gun
Conway originally conjectured that no pattern can grow without limit, of-
fering 50$ to the first person who either proved or disproved this claim.
Although the task at first appeared to be very daunting the prize was won
within a year of its announcement by a group of MIT students working for
the Artificial Intelligence Project. After a great deal of experimentation, the
group find an oscillatory configuration that each 30 steps produces a new
glider: they had discovered a glider gun (figure 5.9). After collecting their
prize, the members of this MIT group discovers that the glider gun itself can
be manufactured out of a collision of 13 gliders.

Here we conclude our digression about the fauna that can be found in GoL.
Obviously this was only a little part of it, containing the simplest, most im-
portant and useful patterns that this powerful system can generate. Nowa-
days all configurations with few cells have already been studied and classified
but the community is still prolific, especially in studying the behaviour of
bigger patterns.

Figure 5.9: The evolution of a glider gun: starting at t=0 we see its pattern each
5 steps. At t=15 the first glider has just appeared and after more 15 steps we
return to the initial configuration.
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5.2 GoL’s universality

Thanks to the previous section we have collected all the instruments to
demonstrate that GoL is capable of universal computation. We will prove
this property showing that Conway’s rule is formally equivalent to another
system that has already been proven to be a universal computer. In particu-
lar we will prove that each of the essential elements for computation (storage,
transmission and processing of information) can be implemented by the evo-
lution of patterns containing only gliders, glider guns, blocks and eaters.

While the precise design of a computer may be complex, its basic ingredients
are relatively simple and few in number. It must have:

• some form of bit stream signals to work with;

• conduits for those signals, like wires;

• a way to route those signals, such as by redirection or sending multiple
copies of a given bit stream into different directions;

• an internal system clock, or timer, to introduce any necessary delays
in building circuits;

• a memory that can store arbitrarily large numbers;

• a set of universal logic gates, such as NOT, AND and OR, from which
all other logical functions and operations can be obtained.

Once it can be shown that a given system supports these computational
primitives, the construction of the actual working circuitry of a conventional
computer becomes a simple formal exercise.

Gliders as bits
We begin by postulating the equivalence between, on the one hand, electrical
pulses and bits of a pulse stream signal in physical computers and, on the
other hand, gliders and glider streams in Conway’s rule CA: in GoL we will
interpret the presence or absence of an individual glider in a well-defined slot
of a glider stream as denoting the corresponding bit value in a physical pulse
stream signal. We already know that glider guns can create a stream of glid-
ers, producing one glider every 30 iteration steps with 7,5 sites of distance
between two of them. However, two or more glider streams moving on inter-
secting ways cannot cross without interferences. In order to build circuits we
need non-interacting glider streams, hence we will produce a special glider
gun that can create glider streams of arbitrarily long periods.
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Thin glider gun
This particular glider gun is relatively easy to construct and depends on only
four basic constructs: a basic glider gun, an eater, a glider-glider annihila-
tion reaction and a kickback reaction. In figure 5.10 there is an diagram that
wants to explain how it works. The thin glider gun uses two parallel but
oppositely directed glider stream outputs of conventional glider guns (arrows
1 and 2 in the figure, triangles are gliders). A single glider also shuttles
between those two glider streams. The timing is such that whenever the
shuttling glider collides with a glider stream it undergoes a kickback reac-
tion: it annihilates a glider in the glider stream and is itself shifted (upward
if it collides on the left stream and downward otherwise) and reversed in
direction. While the glider stream generated by gun 1 is not needed, and is

Figure 5.10: Structure of a thin glider gun with n = 4: arrows are glider guns,
triangles gliders and the cross is an eater.

annihilated by an eater (represented with a cross), the stream generated by
gun 2 encounters with a mutually annihilating reaction a third glider stream
(arrow 3 in the figure). Supposing that every n-th glider on the right stream
is annihilated by the single glider shuttling back and forth between kickback
reactions on the left and right, the resulting glider stream that finally emerges
out of the thin glider gun consists of a thinned set of gliders spaced 30 · n
steps apart. In order to get the right phase timing, n must be divisible by
four, but can be arbitrarily large. In this way we can therefore construct
glider streams with gliders spaced arbitrarily far apart.
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Logic gates
We can build a set of universal logic gates using the preceding constructs.
We will start with NOT, seen in figure 5.11(a). First we assume that input
A is some coded glider stream. Once in the gate, all of the gliders in this
input stream annihilate when they collide with gliders in a complete glider
stream produced by a thin glider gun constructed to have the same frequency
of the input. The only gliders that emerge from the NOT gate are those that
were in the original glider gun stream and were not annihilated by gliders in
A hence a particular position of the output stream contains a glider if and
only if the corresponding position in A did not.
In the AND gate (figure 5.11(b)) two input streams with same frequency, A
and B, enter the gate in parallel. Gliders from a glider gun move on a per-
pendicular course and into an eater, with the timing such that the collisions
between gliders in this glider stream with those in the two inputs are both
annihilations. A glider makes it into the output stream if and only if both
of the corresponding positions in A and B contain gliders.
The operation of the OR gate, the schematic of which is shown in figure
5.11(c), proceeds in a similar way: starting from the AND gate we have
only to eliminate with an eater the previous resulting stream and put a thin
glider gun, with the frequency of A and B, whose stream collides with the
one that comes from the upper part.

Time Delays
In order to make logical gates operate properly, the gliders must be delayed
by a time equal to the distance between the two annihilation reactions. Time
delays of a signal are easily constructed out of NOT gates. Thanks to its
90◦ rotation of the stream it is possible to build a detour consisting of as
many steps as needed for the delay, and then routing the signal stream back
to its original course. Obviously, in order to return the original signal NOT
gates must be used in oven quantities. Other configurations of NOT gates
can delay and reroute signals by 180◦ and/or shift them into parallel paths.
However, no combination of NOT gates can be made to turn a stream side-
ways. Fortunately, this capability comes with the following construction.

A Glider-Stream Copier
The set of tools that we have defined thus far allow us only to reroute single
glider streams into parallel directions of motion but there exists as yet no
provision either for offsetting the direction of a given signal by 90◦ or for
making copies of a signal. One of the simplest circuits that solves both of
these problems is due to Conway and is shown in figure 5.12. The idea is to
use the kickback reaction to send gliders back into their own stream.
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(a)

(b)

(c)

Figure 5.11: (a) NOT gate with A=110110...; (b) AND gate between A=1010...
and B=110110...; (c) OR gate between A=1010... and B=110110... . In (a) and
(c) the arrow signed with T is a thin glider gun.
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Figure 5.12: Conway’s stream copier: the input is the first stream entering the
OR gate and there are three outputs. As before arrows signed with T are thin
glider guns

We need a factor 4 thin glider gun, whose complete glider stream is four time
less frequent than one of a normal glider gun. We also want that the coded
signal stream has been thinned by another factor of 10 (40 total), so that
nine positions are always empty and it is only the tenth position that may
or may not contain a glider. In the figure, we have indicated the value of
this tenth glider-bit position with a question-mark (000000000?). Conway’s
circuit functions as follows: the input data stream that is to be copied enters
an OR gate with the output of a thin-glider-gun but whose glider stream
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is such that the ninth glider position always contains a glider (0000000010).
Hence the output consists of a glider stream that always has the same glider
set as does the original coded signal and always contains a glider in the ninth
position (000000001?).
Now consider what happens when this string encounters a kickback reac-
tion: if ? = 1, it will kickback the first glider in the downward stream which
creates a pile-up collision that will annihilate three gliders in the vertical
stream. Also the coded glider is annihilated but the glider behind it will
pass through the kickback reaction region unaffected. Hence the output is
the string 0000000010. If ? = 0, the first glider in the descending stream will
pass through unaffected but the ninth glider behind the coded glider posi-
tion will kickback the second one which causes the same reaction as before.
In this case the output stream contains no gliders (000000000). In short, if
the coded glider position contains a glider bit ?, the output of the kickback-
reaction is given by 00000000?0, then it contains the same information as the
original signal but the coded glider bit is delayed by one position.
Let us see what happens to the downward moving glider stream after it enters
the kickback reaction region. As we said this collision always removes exactly
three gliders. In particular, if ? = 1 then the kickback reaction strips the first
three gliders off of the downward stream while if ? = 0 then the leading glider
of the downward stream is left alone but the next three gliders are stripped off
by the kickback reaction. Schematically, the output is given by 111111?00?̄,
where ?̄ = NOT(?). This descending stream collides with a transverse thin
glider stream consisting of all empty glider positions except for the tenth,
which always contains a glider (0000000001). This collision is again a kick-
back whose output stream can have a glider only in his last position, and
only when the ?̄ position in the downward stream is empty. In other words,
the leading position of the output at right is NOT(NOT(?)) =?, so that the
output is a perfect replica of the original coded glider stream: 000000000?.
In a similar way, the collision between the downward output of this collision
(111111?000) and a transverse thinned signal 0000001000 produces a negated
copy of the original signal (000000?̄000).

Conway’s circuit therefore has a total of three outputs: one is an exact replica,
another is a faithful copy but with the glider carrying the information shifted
by one position, and the third is a negated copy of the original signal with the
information glider shifted by three positions. Notice that all three outputs
remain parallel to the direction of motion of the original signal. Hence we
can use Conway’s basic signal copying circuit with a NOT gates to reroute
a signal by 90◦.
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Memory Storage
While a finite memory is fairly easy to implement with wires and logic gates
(for example, glider stream informations can be made to circulate around a
memory circuit contained within the computer) the construction of an arbi-
trarily large memory requires a bit more work. A universal Turing machine
uses an arbitrarily long tape as a potentially infinite memory storage device.
Instead, for his proof, Conway used Minsky’s idea that a potentially infinite
memory can also be obtained by storing arbitrarily large numbers in memory
registers.
A simple way of keeping track of large numbers that the computer may have
to remember is to use stable blocks as value markers in an auxiliary memory
storage register. The distance of the block in a given register with respect to
an arbitrarily designated level 0 defines the quantity stored in that register.
Suppose register x contains a block at location N. In order for the computer
to read this value, it must perform the loop

• decrease contents of register x by 1;

• test to see if contents of register x = 0;

until the contents of register x is equal to zero. The number of internal iter-
ations required to decrease the distance of the given block from 0 then yields
the desired register memory value. Conway showed that all of the required
block movements (push to register and pull to read) could be accomplished
by a suitable flotilla of gliders: while there does not exist any single glider-
block collision capable of displacing a block by its site, it may be shown that
ten gliders can be coerced into moving a block by one diagonal lattice site
(see [Berk82]).

Having demonstrated, by construction, that each of the computational ele-
ments required of a conventional digital computer for its own computation
(namely digital bit stream signals, wires, redirection circuits, an internal sys-
tem clock, a potentially infinite memory and a set of universal logic gates
containing NOT, AND and OR) is supported by GoL’s dynamics, we have
thus proven that Life is universal. Indeed, from the above discussion, it
is clear that the circuitry of any computer base on Conway’s rule can be
built entirely out of gliders, glider-guns, eaters and blocks. Hence Conway’s
rule can really be used for computation and every kind of algorithm can be
implemented with it.
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5.3 GoL with Cellular Evolution

Now that we are more familiar with Conway’s rule it is possible to talk about
its implementation using Cellular Evolution. Our system can be customized
changing its two operators: the fitness function and the crossover matrix.
Here we want to show one of the possible choices to obtain Game of Life in
Cellular Evolution.

Since GoL cells can assume only two values, we consider Σ = {0, 1}. We
remind that, according to Conway’s rule, a dead cell becomes alive if there
are exactly two live cells in its neighbourhood while a cell stays alive if there
are two or three live cells in its neighbourhood. In particular we observe that
the future state of a cell depends only by the state of its neighbourhood.
Hence we choose to use a fitness function with values in F = {0, 1} that
describes the will of each cell: if its fitness value is 0 then the cell wants to die
or stay dead while if it is 1 the cell will become or stay alive. Unfortunately
the simplicity of GoL rule leads to a trivialization of the crossover operator:
given a fitness value it simply makes the wish of the cell comes true, without
regard to the state or the fitness value of the mate chosen by the cell.

Practically the operators for implement GoL in Cellular Evolution are:

• f : Σ9 −→ F given by

fi(t) = ΦGoL(Ci(t)) =


1 if

∑
j∈N (i) σj(t) = 3,

σi(t) if
∑

j∈N (i) σj(t) = 4,

0 otherwise.

(5.3.1)

• χ : Σ×F × Σ×F −→ Σ where

χ(σi(t), fi(t), σj(t), fj(t)) = fi(t) (5.3.2)

or, giving all the possible cases, we have the table

χ
(σi(t), fi(t))

(0,0) (0,1) (1,0) (1,1)

(σj(t), fj(t))

(0,0) 0 1 0 1
(0,1) 0 1 0 1
(1,0) 0 1 0 1
(1,1) 0 1 0 1

In conclusion we were able to obtain Conway’s rule in our system, which
means that, just like it, Cellular Evolution is capable of universal computa-
tion.
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5.4 Two evolutions of GoL

Here we want to introduce two new evolutions of Conway’s Game of Life. In
particular these new rules maintain the bi-dimensional lattice but consider
more than two possible states while the evolutions are based on the original
one. These systems are inspired by natural interactions between two species.
As we did before we will implement these new CA with our system, in order
to show its potentiality.

5.4.1 Three states evolution

In this case there are three possible states: Σ = {0, 1, 2} where 0 means dead
while 1 and 2 are the two possible living states. The evolution is described
by the following rules:

• a dead cell (σi(t) = 0) changes state if there are exactly 3 live cells
in its neighbourhood. In that case its state value becomes 1 if in its
neighbourhood there are more cells with state value 1 than whose with
state value 2, and 2 otherwise;

• a live cell (σi(t) > 0) stay unchanged if there are 2 or 3 live cells in its
neighbourhood, otherwise it dies.

We can summarize the evolution of the system considering for each cell i
two values depending on the states of the cells in its neighbourhood namely
1i(t) = |{j ∈ Ni(t)|σj(t) = 1}| and 2i(t) = |{j ∈ Ni(t)|σj(t) = 2}|. Hence
the dynamic rule becomes

σi(t+ 1) = Φ3[σj(t) | j ∈ N (i)] =

=


1 if σi(t) = 0, 1i(t) + 2i(t) = 3 and 1i(t) > 2i(t),

2 if σi(t) = 0, 1i(t) + 2i(t) = 3 and 1i(t) < 2i(t),

σi(t) if σi(t) > 0 and 1 < 1i(t) + 2i(t) < 4,

0 otherwise.

(5.4.1)

For the implementation using Cellular Evolution we can use operators similar
to whose used for original GoL:

• f : Σ9 −→ F given by fi(t) = Φ3(Ci(t));

• χ : Σ×F × Σ×F −→ Σ where

χ(σi(t), fi(t), σj(t), fj(t)) = fi(t) (5.4.2)

whose possible cases are described in the table of the previous section.
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Figure 5.13: A version of the glider gun in three colors GoL seen each 5 time-steps:
it spawns one green glider followed by infinite red ones.

5.4.2 Four states evolution

This case differs from the previous one since there are four possible state
value: Σ = {0, 1, 2, 3} where 0 and 1 are death and live states of the first
form of life while 2 and 3 are death and live states of the second one. In
this case the two form of life will evolve and live in symbiosis hence they will
help each other to stay alive. The rules that describe the behaviour of this
system are given by:

• a dead cell of the first form of life (σi(t) = 0) will become alive (with
state value 1) if in its neighbourhood there are exactly 3 cells with state
value 1 or if there are 3 generic live cells (states 1 or 3) (or equivalently
5 generic dead cells);
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• for a dead cell of the second form of life (σi(t) = 2) the behaviour is
analogous: it will become alive (σi(t + 1) = 3) if in its neighbourhood
there are exactly 3 cells with state value 3 or 3 generic live cells (states
1 or 3) (or equivalently 5 generic dead cells);

• a live cell of the first form of life (σi(t) = 1) stay alive if in its neigh-
bourhood there are 2 or 3 cells with its state value or if there is a
quantity between 1 and 4 of cells with state value 3, otherwise it dies;

• as for the dead case, the behaviour of a live cell of the second form of
life (σi(t) = 3) is similar: it stay alive if in its neighbourhood there are
2 or 3 cells with state value 3 or if there is a quantity between 1 and 4
of cells with state value 1, otherwise it dies.

As we did before, in order to summarize the evolution of this system, we will
consider for each cell i two values that describe the situation of its neighbour-
hood: 1i(t) = |{j ∈ Ni(t)|σj(t) = 1}| and 3i(t) = |{j ∈ Ni(t)|σj(t) = 3}|.
They allow us to write the dynamic rule as follows:

σi(t+ 1) = Φ4[σj(t) | j ∈ N (i)] =

=



0 if σi(t) = 1, 1i(t) /∈ {2, 3} and 3i(t) /∈ {1, 2, 3, 4},
1 if σi(t) = 0 and 1i(t) = 3 or 1i(t) + 3i(t) = 3,

2 if σi(t) = 3, 3i(t) /∈ {2, 3} and 1i(t) /∈ {1, 2, 3, 4},
3 if σi(t) = 2 and 3i(t) = 3 or 1i(t) + 3i(t) = 3,

σi(t) otherwise.

(5.4.3)

Now we can try to implement this system with Cellular Evolution. We may
use the same operator used since now but instead we choose to change a
bit both of them. As we did in the original GoL case we still use a fitness
function that describes the will a cell to become or stay alive but its possible
values are only two: F = {0, 1}. While the fitness value gives the will, the
crossover matrix decides, depending on the current state of the cell, what is
its form of life and consequently what will be its new state value. In formulas
we have:

• f : Σ9 −→ F given by

fi(t) = Φ4(Ci(t))(mod 2) (5.4.4)

• χ : Σ×F × Σ×F −→ Σ where

χ(σi(t), fi(t), σj(t), fj(t)) =

{
fi(t) if σi(t) ∈ {0, 1},
fi(t) + 2 if σi(t) ∈ {2, 3}.

(5.4.5)
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Considering every possible case we have the table

χ
(σi(t), fi(t))

(0,0)(0,1)(1,0)(1,1)(2,0)(2,1)(3,0)(3,1)

(σj(t), fj(t))

(0,0) 0 1 0 1 2 3 2 3
(0,1) 0 1 0 1 2 3 2 3
(1,0) 0 1 0 1 2 3 2 3
(1,1) 0 1 0 1 2 3 2 3
(2,0) 0 1 0 1 2 3 2 3
(2,1) 0 1 0 1 2 3 2 3
(3,0) 0 1 0 1 2 3 2 3
(3,1) 0 1 0 1 2 3 2 3

Figure 5.14: Steps 0, 10, 20, ... of a life generator in the four colors evolution
of GoL: these simple red structure creates infinite patterns of green cells (like the
R-pentamino seen in the original GoL).

This two examples have really interesting behaviour and certainly they can
still be studied in order to find other wonderful properties, but at the moment
we use them only to give us an idea of the potential of Cellular Evolution.
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Conclusions

In this work we wanted to introduce and give some properties of a new kind
of cellular automaton inspired by genetic algorithms: we created a powerful,
flexible and interesting system that has really surprising and amazing be-
haviours and we called it Cellular Evolution.

In particular we concentrated on its definition and on some useful implemen-
tations, like the well known Game of Life created by Conway that gives us
the property of universal computation, but this brand new system still hides
lots of curious and maybe useful developments.

However, in this paper, you have seen only a little part of our studies: we
showed only trivial fitness functions and crossover matrices in order to obtain
some specific results, but the work behind this new creation has just begun.

Considering also the evolutions of Game of Life, our future goals are primarily
three:

• deepen the knowledges about GoL evolutions, for example by classify-
ing the behaviours of arbitrary structures;

• consider cases of medium complexity characterized by crossover func-
tions depending only on state values;

• study the most generic cases with crossover operator depending on both
fitness and state values.

Now we are concentrating on the second step and the following pictures, cre-
ated with our open-source program, show some of the resulting situations
that can be reached with this kind of functions and the evolution of a par-
ticular case. If you are interested, our works (in Matlab and Python) can be
found in [CEDr17] where we upload and keep updated all our files.

41



CHAPTER 6. CONCLUSIONS 42

Figure 6.1: Some awesome shots generated by Cellular Evolution.

As you can see the results are really amazing and sometimes they may be
clearly associated to natural situations but we have still to continue studying
the system to say something more specific. Anyhow it has a big potential and
we hope that, if not us, the community will find some specific applications
that can improve predictions and creation of models in other disciplines.
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Figure 6.2: An interesting case developed with Cellular Evolution.
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