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ABSTRACT 

 

Technology has offered so many good things to the human race, from organ transplants in 

medical, the miracles of biometrics, Artificial Intelligence and to the communication 

systems, science and technology have always amused us. However, the best thing that I 

found good about technology is that it can help those who are an inevitable part of our 

societies; here I am talking about people with sensory disabilities. They need more 

attention, more focus and more help than normal humans do.  This proposed work is a part 

of a bigger project that deals with developing intelligent systems for people with sensory 

disabilities. An Artificial Neural Networks based Optical Character recognition system has 

to be developed that will be used for learning and education of visually impaired people 

This proposed thesis entitled “Experimental validation of Back Propagation Algorithms for 

Pattern Recognition” is a completely experimental work based on ANNs and Back 

Propagation algorithm, which required many test and validation sessions. In this thesis, we 

focus on feedforward neural networks trained by using the Backpropagation (BP) 

algorithm, which is a widely used method of training. This research work consists all the 

major activities from creating data sets (Both training and validation), training the ANN 

and then testing it. Another major activity was the optimization of the parameters of the 

ANN and BP algorithm. The results acquired after optimization are very interesting and 

helpful for the future works. This proposed thesis will prove to be a big help in carrying 

out the next phases of the project in a fast manner.  

Keywords: Optical Character Recognition, Artificial Neural Networks, Back Propagation 

Algorithm 
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Chapter 1: Introduction 
 

Many forms of technology, both "high" and "low” can help individuals with learning 

disabilities to capitalize on their strengths and bypass, or compensate for, their disabilities. 

Such technologies are called “Assistive Technologies”. All the technologies that can 

enhance the performance of people with disabilities can be conceptualized as Assistive 

technologies. As defined by the Individuals with Disabilities Education Act Amendments 

of 1997, assistive technology is "any item, piece of equipment, or product system . . . that 

is used to increase, maintain, or improve functional capabilities of individuals with 

disabilities".  

Assistive technology is an umbrella term that comprises assistive, adaptive, and 

rehabilitative devices for people with disabilities and encompasses the process used in 

selecting, locating, and using them. Assistive technology upholds greater independence by 

enabling people to accomplish tasks that they were formerly unable to achieve, or had great 

difficulty accomplishing, by providing enhancements to, or changing methods of 

interacting with, the technology needed to accomplish such tasks. 

This proposed thesis is a part of a big project in the setting of the agreement between 

I.Ri.Fo.R./UICI (Institute for Research, Education and Rehabilitation/Italian Union of 

Blind and Low Vision people) and the University of Turin, Which is related to assistive 

technologies for visually impaired people. The idea is to develop an Optical Character 

Recognition (OCR) system, which can help the people with visual impairments in 

education and learning. An OCR transforms a not-editable format (usually not accessible 

with screen reader and braille display) into an editable one such that it can be made 

accessible. The main objective of this OCR would be automatically generating texts and 
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mathematical formulas for people with visual disabilities. Prior to this work, a Japanese 

software development firm has already launched an OCR of this kind but it works on 

Vector scaling algorithm. The Japanese OCR known as InftyReader is the unique one that 

performs automatic recognition of documents containing also formulae. Its performances 

are not ever optimal (for instance, bold characters are not correctly recognized and some 

further errors are performed in the recognition of mathematical formulae). Our OCR is 

based on Artificial Neural Networks (ANNs) and Back-Propagation ((BP) Algorithm. 

From the very beginning, the idea was to develop a model that works as a human nervous 

system, which consists of neurons and works exactly in the same way as a human brain 

does and have more or less same information processing capabilities that a human brain 

can have. Therefore, we must understand the anatomy and the essential properties of the 

nervous system (i.e. Biological Neural Networks). After successfully understanding the 

properties of a human brain, we are able to design abstract models of the Artificial Neural 

Networks (ANNs). 

We discuss the perceptron that in theory is a mathematical counterpart of biological neuron. 

One can perform very simple tasks using single perceptron, but for carrying out complex 

operations, we need a network of multiple neurons. Multiple layer neural networks are 

discussed in detail in Chapter 2. An example of XOR problem is also discussed in this 

chapter. 

A prior study on this topic was related to developing an ANN using BP algorithm that 

could perform character recognition and people succeeded to do so but validation of the 

ANN was inevitable to proceed further. This thesis will prove to be a crucial step for doing 

so. BP algorithm consists of some important parameters, which should be optimized for 
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the best performance of ANN and in this proposed thesis, optimization of those parameters 

has been performed to validate the ANN. It is important to discuss the parameters of ANN 

with BP algorithm like learning rate (eta), number of hidden neurons (N), the interval in 

which the weights are initialized (h) and the problems related to these parameters. The 

parameters must be optimized to get the best performance of the ANN.   

The thesis contains all the steps of validating an ANN such as, creating training sets, 

training the ANN and finally, testing it. A well-known issue about the creation of OCRs 

using ANNs is the tuning of some parameters that affect performances. Moreover, it is also 

difficult to find data sets that can be used to train an ANN for character recognition. 

Therefore, in this thesis, we start to solve these problems without considering the 

mathematical symbols, since the results obtained only considering English characters are 

useful for addressing the previous problems also in presence of formulae. 

First Chapter is Introduction, which comprises a brief introduction of the thesis and the 

related projects. We can regard this chapter as a summary of the whole thesis. 

Second chapter is an overview on Artificial Neural Networks (ANNs), which can give a 

lot of information on ANNs and their biological counter parts, the information about 

neurons and perceptron is very interesting. Furthermore, it is discussed, how to generate 

Multi-layer Feed Forward Networks using multiple perceptron. XOR Problem is also 

discussed in this chapter. 

In third chapter, i.e., Training Algorithms and ANNs, we discuss supervised and 

unsupervised training, and then we focus on supervised training and discuss Back-
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Propagation Algorithm in detail, with notations and a brief Proof of BP algorithm. Then 

we discuss the problems that one can face when using BP algorithm. 

Fourth chapter, i.e., Application to Character Recognition, comprises of the steps involved 

in character recognition and MatLAB functions that we use for creating data sets, training 

and testing ANNs and experimental results. It has all the detailed results in form of tables 

and surface graphs. 

In fifth chapter, we conclude our report, with some interesting results and future work that 

is to be done in the concerned project. 

 

.  
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Chapter 2: An Overview of Neural Networks 

2.1. Biological and Artificial Neural Networks 

From the very beginning, the idea was to develop a model that works as a human nervous 

system, which consists of neurons and works exactly in the same way as a human brain 

does and have more or less same information processing capabilities that a human brain 

can have. Therefore, we must understand the anatomy and the essential properties of the 

nervous system (i.e. Biological Neural Networks). After successfully understanding the 

properties of a human brain, we will be able to design abstract models of the artificial 

neural networks.   

From the studies, it is evident that a human brain is a complex organ that works on the 

principle of “control through communication” between neurons. Neurons are 

interconnected through wire like veins, so, it makes a humongous network of billions of 

neurons. Neurons are slower than logic gates that we use in our computing devices; they 

can achieve stimulus or reaction times of few milliseconds whereas logic gates switch in 

nanoseconds. However, the brain can solve the problems that even computers are not able 

to solve. Let us now try to understand the phenomenon of information transfer from one 

neuron to another neuron in detailed fashion. 

  The sensory system of a human is may be a data transforming system. The tangible inputs, 

i.e., signals from the environment, can be coded and transformed that bring out those fitting 

reactions. Moreover, Biological Neural networks are self-organizing frameworks; also, 

every single neuron is a fragile, self-organizing structure skilled for information processing 

of the data at very large scale. 
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2.1.1.Nervous system 

        The ability to cop up with your surroundings, to see, to hear, to feel, to smell relies on 

your nervous system. So eventually, whatever you perceive from the environment is 

possible because of a complete, complex communication system that connects your brain 

with other body parts. The major source of this connectivity are interconnected nerve cells 

and Glial cells i.e. Neurons and Glia. (Byrne, J. H. 2016) 

Neurons are essential practical units of the sensory system; furthermore, they produce 

electrical signals known as action potentials, which permit them to transmit data in long 

distances. Glia also plays an important role in 

stabilizing the nervous system but they work to 

support neurons.  

Before discussing the structure of neuron in details, 

let us have brief introduction of human nervous 

system. (Kendel et al., 1995) 

In humans and other species, the sensory system can 

be comprehensively classified under two sections: 

Central sensory system and the Peripheral sensory 

system.  

The Central sensory system (CNS) comprises of the mind and the spine. It may be in the 

CNS that analyses all the information. (Purves, D. et al., 1997). 

Peripheral sensory system (PNS), which comprises of the neurons and parts of neurons 

discovered outside of the CNS, incorporates sensory neurons and motor neurons 
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2.1.2.    Classes of Neurons 

According to their functions, neurons present in a nervous system can be classified into 3 

types  

 Sensory Neurons 

 Motor Neurons 

 Interneurons 

 

2.1.2.1. Sensory Neurons 

Sensory neurons get majority of the data regarding what is happening inside and outside 

of the body and pass on that information to the CNS for processing. For example, if you 

accidently touch a hot plate, the sensory neurons at the outer layer of your skin will pass 

the information to your CNS that plate was hot. . (Nicholls, J. G. et al., 2001) 
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2.1.2.2. Motor Neurons  

The primary function of motor neurons is to get information from other neurons and 

convey that information to your glands, muscles and organs. For instance, when you 

incidentally touched the hot plate, sensory neurons passed the information about plate 

being hot to CNS, now CNS will process that information and figure out that touching 

a hot plate can be injurious, so it will transmit this info to the motor neurons with the 

help of interneurons and in response you will avoid touching the hot plate. (Swift, A. 

2015) 

2.1.2.3. Interneurons 

Interneurons can only be found in CNS, and they are used to pass on sensed or 

processed information to either CNS or PNS. Let’s continue with the same example, 

so when you touched hot plate, sensory neurons will carry the info to interneurons in 

CNS, after processing some other interneurons will pass the processed information to 

motor neurons, as a result you avoid touching the hot plate. On the same time, other 

interneurons would transmit the signal up the spinal cord to neurons in the brain, where 

it would be perceived as pain. (Swift, A. 2015) 

2.2.  Structure of a Single Neuron 
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From the brief study of the classes of neurons, when can figure out the following basic 

functions of a neuron. 

 Reception of the signals 

 Integration of incoming signals to determine weather information should pass or 

halt 

  Transmit the signals to target cells, glands, tissues or organs 

We can further study these functions in the anatomy of a neuron. (Reece, J. B. et al., 2011) 

2.2.1.  Anatomy of a neuron.  

As other cells present in the human body, neurons also have a physique called the soma. 

The core of the neuron can be found in the soma. Neurons require processing a considerable 

measure of proteins and neuronal proteins are synthesized in the soma.  

2.2.1.1. Nerve Process (Dendrites and Axon) 

Nerves can be classified into Dendrites and Axon these nerves transmit and receive 

signals from brain, spinal cord and different organs with the help of nerve impulses. 

Dendrites carry impulses toward the nerve cell body, and axons carry impulses away 

from the cell body. Therefore, we can say that dendrites are receiving ends of the cell 
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body and Axons are receiving ends of the cell body.  As a final step, the signal leaves 

through the synapse to be passed along to the next nerve cell. Like most other cells in 

the body, neurons also have a nucleus, which holds the cell's DNA. (Sadava, D. E. et 

al., 2009) 

2.2.1.2. The Synapse 

Neurons have specific projections called dendrites and axons. As we already know that 

dendrites bring information to the cell body and axons take information away from the cell 

body. (Sadava, D. E. et al., 2009) 

Information from one neuron flows to another neuron across a synapse. The synapse is a 

small gap separating neurons. The synapse consists of: 

 a presynaptic ending that contains neurotransmitters, mitochondria and other cell 

organelles 

 a postsynaptic ending that contains receptor sites for neurotransmitters 

 a synaptic cleft or space between the presynaptic and postsynaptic endings 

  Now when we have a basic understanding of how a biological neuron works, let us jump 

to a mathematical model of a neuron, also called a perceptron. 

2.3. Mathematical Model of a single neuron (Perceptron) 

A Perceptron can be regarded as the most basic unit of a neural network. A parametric 

system have inputs, a network or a control block that processes the parameters, and off 

course the outputs. Therefore, we can see a single perceptron as a parametric system and 

study its model. 
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Figure 1-5 shows how to conduct a learning 

process for a parametric system. (R. Rojas: 

Neural Networks, Springer-Verlag, Berlin, 

1996) 

Perceptron are the simplest data structures 

for the study of Neural Networks. We can 

perceive a perceptron as a node of an interconnected network. The links between the nodes 

not only show the relationship between the nodes but also transmit data and information, 

called a signal or impulse. The perceptron is a simple model of a neuron (nerve cell).s 

 

A perceptron model have n inputs and an output. The inputs are “carried” within the 

perceptron by weighted connections (that emulates the role of synapses), as shown in figure 

2-6. Thus, the perceptron receives n inputs, i.e. any input is multiplied by the weight over 
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the connection that transports it. Then, the perceptron sums all the weighted inputs and 

applies an output. The input values are logical i.e. true or false, 1 or 0, but they can be any 

real number as well. The output of the perceptron, however, is always logical (1 or 0). 

When the output is true, the perceptron is said to be firing.  

One very common activation function is the threshold function. All of the weights attached 

to inputs are simply multiplied by the input value and then added with other weighted 

inputs to get the final sum, which finally is given to activation function to see if it greater 

than or less than threshold value. Threshold is the most important components of the 

perceptron. It decides on the bases of a given function that weather perceptron can fire or 

not. Therefore, it fires whenever the following equation is true, where wj and ij represent 

the weights and the inputs respectively for j=1,…,n and t is the threshold value. 

I1W1 + I2W2  + …. + InWn  = t 
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Sometimes the perceptron involves another parameter called bias.  A bias value allows you 

to shift the activation function to the left or right, which may be critical for successful 

learning. 

Let us now take a deep look on how a perceptron can solve a simple problem. We will try 

to construct simple networks that can solve NOT, AND and OR problems, it is than 

possible to easily solve any logical operation using these three operations.  

 

In figure 2-8, we can see the implementation of the basic logic gates, the only important 

thing to notice in the figure is the selection of weights and threshold value. For NOT gate, 

we know the output should be exactly inverted; therefore, weight equals -1 is multiplied 

with the input. Moreover, threshold must be set in order to get the inverted output. We have 

set -0.5 as threshold, so when input is 0, the weighted input is 0 as well, which is less 

greater than -0.5, so the output must be1 and vice versa. In the same way we can study OR 

and AND gates as well. (John A. Bullinaria, 2015) 
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Moreover the perceptron is a model too simple to solve complex problems (for instance it 

cannot solve the XOR problem),but if we consider multiple perceptrons working together, 

we can address very complex problems. Let us see how to model a NN in the following 

topic. 

2.4. Artificial Neural Networks 

From previous studies we can sum up that, the network of multiple perceptron can be called 

an Artificial Neural Network or ANN. Single perceptron is not capable of doing miracles, 

it can solve very basic problems but when then complexity increases, we must introduce 

more perceptron. Therefore, we use a network of perceptron to solve bigger problems, it 

the same as the brain does but as we are dealing in mathematics, so, we must model it. 

However, before starting to model a simple ANN, we must talk about the ANN topologies 

and structures. 

Usually we are going to have multiple neurons with different indices (k, i or j) and the 

activation flows between them via synapses with strengths wki and wij.  
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We need to take care of all the activation and weights without introducing any 

complication. Let us address some of these complications. 

 Every neuron have some inputs and outputs. However, output of one neuron can be 

input of another. 

 Usually, the networks are built up on layers of neurons, so we number the neurons 

separately in each layer, but we have to distinguish the weights and activations for 

different layers.  

 We will found different labels in different books and references for inputs, outputs, 

activations and weights. Like in figure 2-8, inputs are labeled as in1i, in2i and output outi. 

 

2.4.1.   ANN Topologies and Structures 

According to activation flows, we can classify ANNs into following structures: 

 Single Layer feedforward ANNs: they have just one input layer and one output layer; 

there is no feedback connection as well. 

 Multi-Layer feedforward ANNs:  They have one input layer, one output layer and 

one hidden layer for processing units. There is no feedback connection, and the hidden 

layer is always between input and output layer. 
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 Recurrent ANNs: A recurrent ANN has at least one feedback connection; it can have 

hidden units but not necessarily.  

 

In this thesis we mainly focus on multi layered feed forward networks. A milti 

layered feed forward neural network consists of three layers of neurons i.e. Input 

layer, Hidden layer and output layer. The neuron belonging to same layer are not 

connected with each other but they are connected with all the neurons that belong to 

next or previous layer. The neurons in input layer are just there to transport the inputs into 

NN. That is why they do not carry any weights. (John A. Bullinaria, 2015) 

Figure 2-11 can give a better understanding of what is said above. 
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The only reason for adding this information is that when we start building out neural 

network, we must know, what to avoid and what to adopt. Now, we discuss an example of 

an ANN, which solves a complex problem more complex than NOT, AND, OR gates. 

2.5. ANN and the XOR Problem 

Two input Boolean operations are among the building blocks of understanding the learning 

process of neural computation. Only two of them show a strong level of complexity i.e. 

XOR and inverted XOR. (Richard Bland, 1998) 

In this section, we will see how to solve a classic XOR problem using ANN. I mentioned 

the XOR problem as a classic because it has its history with neural computing. This is the 
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first problem that scientist faced when working on a single perceptron. Therefore, XOR 

problem opened the door for ANN and multiple layer neural computing. 

 

In the previous section, we saw that we could solve many simple problems with a single 

perceptron. However, for performing XOR operation, a single perceptron was not enough, 

therefore, we are obliged to opt for multiple perceptron. Let us now analyze the problem. 

We have a two binary input problem get the output in a particular way i.e. if we have same 

inputs the output should be zero and if we have different input, output should be one.  

We can use a multi-layer feedforward NN to solve this problem. In figure 2-11, we have a 

complete solved XOR problem with chosen weights, thresholds and the activation function 

as well. As we can see in the figure above, 0, 1 in gray, 2, 3 in blue and 4 in green, are the 

labels assigned to the neurons. All the 1 and -1 are the weights over the connection. 

Moreover, the weights and the threshold of neuron 2 are set in a way that it performs 

inverted i1 + inverted i2 operation. On the other hand neuron 3 is doing an OR operation. 

Lastly, neuron 4 is doing an AND operation. ( Richard Bland, 1998)  
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 i1 = 0, i2 = 0: According to our network, when both inputs are zero, neuron 2 will give 

1, otherwise it will be zero. On the other hand, neuron 3 will give out 0. Neuron 4 is 

performing an AND operation. Therefore, now we have 2 inputs 1 and 0, so output will 

be zero. 

 i1 = 1, i2 = 1: Now, neuron 2 gives out 0 and neuron 3 gives out 1, the AND operation 

for these inputs will be zero. 

 i1 = 0, i2 = 1: if any input is zero, neuron 2 produces output equal to 1 and neuron 3 will 

give out 1 if any input is 1, so we have AND operation of true inputs that is 1.  

  i1 = 1, i2 = 0: if any input is zero, neuron 2 produces output equal to 1 and neuron 3 will 

give out 1 if any input is 1, so we have AND operation of true inputs that is 1.  

 

 



27 
 

 

2.6. Conclusion 

In this chapter, we understood the biological and mathematical perspectives of neural 

networks. We came up with a model of a single perceptron, then we discussed about how 

to implement simple neural networks with the help of a single neuron. Finally, we jumped 

to the more complex XOR problem. Now in the next chapters, we will use this knowledge 

to understand the required algorithms and to develop our neural network, which will 

perform character and formula recognition. 

 

 

 

 

 

 

 

 

 

 



28 
 

 

Chapter 3: Training Algorithm & Artificial Neural networks 

3.1. An Overview on Training Approaches  

As we have seen in the previous chapter, the behavior of the ANN is mainly determined 

by the weights associated to the connection. If we have to approach a complex problem, 

surely we need a complex ANN (with many layers and neurons). Thus, it is impossible to 

find “a prior” the correct values of the weights, so that the ANN performs as we desire. 

Therefore, it is useful to randomly initiate these weights and then adjust their value by 

means of a training algorithm. Training a neural network can be approached in two ways: 

in fact, training can be Supervised or Unsupervised. Supervised training requires both 

training input and the corresponding desired output to be given as data of the training 

algorithm. In unsupervised training instead, we usually give only set of inputs to ANN, 

which then elaborates patterns of “knowledge” from data. (S. B.Maind. et al., 2014) 

3.1.1. Supervised Training 

For what concerns supervised training, we provide the network with both the training 

inputs and the corresponding desired outputs. Then our network processes and try to 

establish a comparison between the actual outputs and the desired outputs. As previously 

said, we initialize the weights randomly, so we have to find the correct weights for each 

connection between adjacent perceptron to decrease an error measure so that the final error 

(nearly) reaches zero (D. Anderson, et. al., 1992). The input data set is called a training set. 

Therefore, we process same training set for many iterations to get the desired outputs. The 
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most common among  the supervised algorithms until date is the back-propagation 

algorithm and its modified forms. We will discuss about it later in this chapter. 

3.1.2. Unsupervised or Adaptive Training  

In this form of training algorithm, the network is provided with just the inputs. Therefore, 

the network must itself decide what features to use to cluster the input data. This process 

is referred to as adaption (D. Anderson, et. al., 1992). Therefore, we can say that it is more 

of a probability and identification problem in which we use different identification tools 

for machine learning. The development of these kinds of algorithm that enable a machine 

to automatically process text and language has always been a great challenge in Artificial 

intelligence, Expert systems and Machine learning. 

ANNs for unsupervised training can be generally used to take better representations of the 

inputs, for example, provided a test of text documents an ANN can map that document to 

a real valued vector in such a way that resulting vector is similar like the documents in its 

content. Therefore, by using clustering techniques we can use our ANN  with unsupervised 

learning. We will not discuss this topic in detail, as we are more focused in supervised 

learning (D. Anderson, et. al., 1992).   

3.2. Network Selection 

Based on the type of application, we choose a befitting algorithm for training our network. 

This is a crucial part as we should decide what kind of algorithm we have to use before 

designing out neural network and after deciding we carry forward everything accordingly. 
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Some of the design considerations include determining the number of input and output 

nodes to be used, the number of hidden layers in the network and the number of hidden 

nodes used in each hidden layer. The number of input nodes is typically taken to be the 

same as the size of state variables. The number of output nodes is typically the number that 

identifies the general category of the state of the system. Each node constitutes a processing 

element and it is connected through a set of weighted links to other elements. In the past, 

there was a general practice of increasing the number of hidden layers, to improve training 

performance.(Imran Shafi et. al) Keeping the number of layers at three and adjusting the 

number of processing elements in the hidden layer, can achieve the same goal. A trial-and-

error approach is usually used to determine the number of hidden layer processing 

elements, starting with a low number of hidden units and increasing this number as learning 

problems occur. Even though choosing these parameters is still a trial-and-error process, 

there are some guidelines that can be used, (i.e., testing the network’s performance). It is a 

common practice to choose a set of training data and a set of Validation data that are 

statistically significant and representative of the system under consideration. The training 

data set is used to train the ANN, while the validation data is used to test the network 

performance, after the training phase finishes (Magali R. G. et al, 2003) 

Most applications of neural networks fall into the following five categories:-  

 Prediction  

 Classification   

 Data association 

 Data conceptualization   
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 Data filtering 

Network Type Network Approach Use of the Network 

Prediction Back-propagation - Delta Bar 

Delta - Extended delta bar 

delta - Directed random search 

- Higher order Neural 

Networks - Self Organizing 

Map into Backpropagation 

Use input values to predict 

some output (e.g. pick the best 

stocks in the stock market, 

predict the weather, identify 

people with cancer risks and 

optical character recognition) 

Classification Learning vector quantization 

Counter-propagation -

Probabilistic neural network 

Use input values to determine 

the classification (e.g. is the 

input the letter A? is the blob 

of video data a plane and what 

kind of plane is it?) 

Data association Hopfield - Boltzmann 

Machine - Hamming network 

Bidirectional associative 

memory -Spatio-temporal 

pattern recognition 

Like classification but it also 

recognizes data that contains 

errors (e.g. not only identify 

the characters that were 

scanned but also identify 

when the scanner wasn't 

working properly) 

Data conceptualization Adaptive resonance Network 

Self organizing map 

Analyze the inputs so that 

grouping relationships can be 

inferred (e.g. extract from a 

data base the names of those 

most likely to buy a particular 

product) 

Data filtering Recirculation Smooth an input signal (e.g. 

take the noise out of a 

telephone signal) 

Table 3-1: Network selection table 

3.3. Back Propagation Algorithm 

This thesis is dealing with a neural network that is designed using back propagation (BP) 

algorithm, therefore, we will discuss more about that and keep other approaches aside.  



32 
 

In this section, we consider a fully connected network trained using BP algorithm with 

pattern wise approach. A single hidden layer network with an enough hidden neurons is 

sufficient for approximating the input-output relationship. Hence, in our analysis, we 

consider the network with three layers having N(k)  neurons in each k-th layer. The different 

phases in the learning algorithm are discussed in this section. (Suresh et al.2005) 

The BP algorithm is a supervised learning algorithm, and is used to find suitable weights, 

such that for a given input pattern, the network output should match with the target output. 

The algorithm is divided into three phases, namely, forward phase, error BP phase, and 

weight update phase.  

Let us consider a neural network with L layers. Let N(i) be the number of neurons in the 

layer i, for i = 1,…,L and wij
(k) be the weight of the connection between the i-th neuron in 

the layer k and the j-th neuron in the layer k - 1. An ANN is trained over a set of inputs so 

that it provides a fixed output for a given training input. Let us denote X the set of training 

inputs. An element x ∈ X is a vector, Let aj
(k, x) be the output of the i-th neuron in layer k 

when an input x is processed by the ANN and y (x) is the desired output of ANN when x is 

processed. The goal is to determine the values of the weights so that, a(L, x) != y (x) . In the 

next section, we will see notations and the working of BP algorithm.(Giuseppe Airo 

Farulla, et al.) 

3.3.1. Notations 

L is the number of layers of the N.N. 

N(k) is the number of neurons in k-th layer 
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X is the set of all training inputs; where an element x in X is a vector whose length is equal 

to N(1), i.e. ׀ x ׀= N(1) 

Y is the set of desired outputs; where an element y in Y is a vector whose length is equal to 

N(L), i.e. ׀ y ׀= N(L) 

y (x) is the desired output when the N.N. processes the training input x 

wij
(k) is the weight of the connection between neuron i in layer k and neuron j in layer k-1 

w(k) is the matrix with the dimension N(k) x N(k-1); its entries are all the weights of the 

connections between (k-1)-th and k-th layer 

f is the activation function 

z(1, x) := xT i.e. is the training input written as a column vector 

a1
(1, x) := z(1, x) , a1

(1, x) is the output of the first neuron in first layer when you gave x as input 

of the N.N. 

For all k = 2,….,L  

z(k, x) := w(k) * a(k-1, x)   

a(k, x) := f(z(k, x)) 

a(L, x) is the final output of the N.N. when you give x as input of the N.N. 

aj
(k-1, x) is the output of the j-th neuron in the (k-1)-th layer when you gave x as the input 
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3.3.2. The BP Algorithm 

We would like to find all the weights, such that, we have a(L, x) = y (x) for all the training 

inputs. Let us see the steps of the algorithm. 

wij
(k) are randomly initialized in the interval (-h/2,h/2) 

while ∃ x∈ X: a(L, x) != y (x) 

 for x ∈ X,  

do 

   z(1, x) = a(1, x) = x 

 for k=2,…..,L   

do 

z(k, x) = w(k) * a(k-1, x)   

a(k, x) = f (z(k, x)) 

 end for 

d(L, x) = (a(L, x) - y (x)) ⊙ f (z(L, x)), where ⊙ is the component wise product 

for k = L-1,….,2  

do 

 d(k, x) =[( w(k+1))T * (d(k+1, x))] ⊙ f (z(k, x)) 

 end for 
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 end for 

for k=L,…..,2 

  do 

w(k) = w(k) – ƞ/ |x|  Σ x ∈ X  (d(k, x) * (a(k-1, x))T )  

where ƞ is a parameter called learning rate. 

end for 

end while 

We can observe that in BP algorithm, the quantity, d(L, x) = (a(L, x) - y (x)) ⊙ f (z(L, x)) is 

essentially the error performed by our ANN when it processes the input x for the current 

values of the weights i.e. it is the measure of how much the output of the ANN is far from 

the desired output. The following lines in the algorithm “back propagate” such an error in 

the previous layer. Later, we briefly see the origin of the equation that updates the values 

of the weights in the BP algorithm. 

Now for the sake of simplicity, we will consider k=L, and we prove that updating the values 

of the weights using following equation decreases the error of our ANN   

  w(L)new = w(L) – ƞ/ |x|  Σ x ∈ X  [(a(L, x) - y (x)) (a(k-1, x))T ⊙ f (z(L, x))] 

Given the set of initial weights that are randomly sampled, we want to change them in order 

to get a(L, x) = y (x) for all the training inputs x. Thus, we would like to minimize following 

cost function: 
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  C(w) = 1/2n Σ x ∈ X  ‖ y (x) - a(L, x)  ‖2     (1) 

Where n = |x| and w shows that the cost function depends on the weights that we currently 

have assigned. 

We use a quadratic cost function because it easily shows how to make small changes in the 

weights to get an improvement in the cost function. The function C is essentially a measure 

of the error performed by the neural network with the current weights. So, we want to find 

a way to reduce such an error gradually. 

In general if, we have a function g with n variables i.e. g = g(x1… xn) it is well known that, 

  Δg = g(x1 
new

… xn 
new) - g(x1… xn)  ≅ 

 ≅ ∂g/∂x1 (x1 
new - x1) + ∂g/∂x2 (x2

new -x2) +…..+ ∂g/∂xn (xn 
new -xn) (2) 

The gradient vector is defined as follows: 

   ∇g := (∂g/∂x1… ∂g/∂xn)
T 

Where ∇g is a column vector, Hence we can write eq(2) as the dot product of ∇ g and Δ x 

i.e. 

   Δg ≅ ∇ g ∙ Δ x 

Where, Δ x = (x1 
new -x1, x2 

new - x2…. xn 
new - xn) and is a row vector. 

Thus we easily (and quite trivially) choose a value for Δ x so that Δg < 0, in this way we 

have that g(x1 
new

… xn 
new) < g(x1… xn). If we think to the cost function C, this means that we 

have reduced the error of our ANN, so we can choose, 
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   Δ x = - ƞ∇g ;       (3) 

where ƞ is a positive constant named the learning rate. From eq(3) we have 

   Δg = - ƞ‖ ∇g ‖2 < 0 

If we define the vector xnew = (x1
new ,…., xn 

new) and x = (x1,….., xn) 

   xnew = x - ƞ*∇g  

If we apply this formula to eq(1), we get 

 

   wnew = w - ƞ /2n*2 Σ x ∈ X  ‖ y (x) - a(L, x)  ‖ * (a(L-1, x)T ⊙ f (z(L, x)), 

Remembering that  a(L-1, x) = f (z(L, x)) = w(L)  a(L-1, x)   

3.4. Overview on identification of BP Algorithm parameters 

The capacity of an ANN to generalize well on hidden data depends on a variety of factors, 

most important of which is the matching of the network complexity with the degree of 

freedom or information that is essential in the training data. Matching of this information 

with complexity is critical as it allows ANNs to generalize properly to a set of possible 

different inputs. A measure of the complexity of a structure is its number of free or 

adjustable parameters, which for a feedforward neural network is the number of synaptic 

weights. Clearly, the ability of a feedforward neural network in learning the samples of the 

training set is proportional to its complexity. (E. J. Teoh, et al.) 
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The BP algorithm is the most used approach when it comes to using ANNs for optical 

character recognition because of its ability to process huge data sets (Sheetal et. al), but 

these approaches have some drawbacks as well, and in this section, we will discuss those 

drawbacks regarding some parameters. Eventually, the goal of this thesis is to find out the 

optimal values of these parameters for optical character recognition with multiple data sets.  

3.4.1. Learning Rate (ƞ)  

Training a neural network using an algorithm such as described in the section 3.3 usually 

requires a lot of time on large, composite problems. Such algorithms typically have a 

learning rate parameter that defines how much the weights can change in response to an 

experimental error on the training set. The choice of this learning rate can have a significant 

impact on the generalization accuracy as well as on the complexity and thus duration of 

training. Almost anyone who has used such training algorithms has been faced with the 

problem of choosing the learning rate, but there is rarely much guidance on what value to 

use, since the best value to use depends on peculiarities of the single task (D. Randall 

Wilson, et al.). 

When using a gradient descent-learning algorithm, the error gradient (or an approximation 

thereof) is calculated at the current point in weight space, and the weights are changed in 

the opposite direction of this gradient to minimize the error described by means of an error 

function. However, although the gradient may indicate what direction the weights should 

be moved, it does not specify how far the weights may safely be moved in that direction 

before the error quits decreasing and starts increasing again. Therefore, a learning rate that 

is too large often moves too far in the “correct” direction, resulting in overshooting a valley 
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or minimum in the error surface, thus hurting accuracy. Because of this effect, when using 

a learning rate too big the training will cause longer training; this is so, because the ANN 

is continually overshooting its objective and tends to “unlearn” what it has already learned, 

thus requiring expensive backtracking or causing unproductive oscillations. This instability 

often causes poor generalization accuracy as well, since the weights can never settle down 

enough to move all the way into a minimum before bouncing back out again. (Wilson, D. 

R. et.al) 

Once the learning rate is small enough to avoid such overcorrections, it can proceed in a 

relatively smooth path through the error landscape, finally settling in a minimum. Reducing 

the learning rate further can make this path smoother, and doing so can significantly 

improve generalization accuracy. However, there comes a point at which reducing the 

learning rate any more simply wastes time, resulting in taking many more steps than 

necessary to take the same path to the same minimum.( Jacobs, R. A, et al.) 

3.4.2. Number of neurons in hidden layer (N) 

Optimizing the number of hidden layer neurons for building an AFNN to solve the problem 

remains one of the mysterious tasks in this research area. Setting too few hidden units 

causes high training errors and high generalization errors due to under-fitting, while too 

many hidden units results in low training errors but still high generalization errors due to 

over fitting ( Shuxiang Xu, et al. 2008). The only one advice given for setting the number 

of neurons in the hidden layer is to take a number between the numbers of neuron in last 

and first layer, see (Rojas, Neural Networks, A Systematic Introduction, 1996). However, 
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this consideration is not supported by theoretical studies and could not be effective for 

approaching some problems. 

3.4.3. Weight Initialization in BP Algorithm 

Weight initialization has been widely recognized as one of the most effective approaches 

in speeding up the training of neural network. (Jim Y.F. Yam, et. al) Initializing of weights 

effects the performance of neural networks largely. For that purpose, researchers around 

the world have proposed many methods of initializing the weights as ANNs are used in 

solving very complex problems, so every problem is heavily effected by initialization of 

weights. The most used method until date is random weight initialization, even if many 

techniques have been recently developed. In spite of this, random initialization is still the 

most common method due to its simplicity. In the present norm, we use random 

initialization. (Nadir Murru, et. al) 

3.4.4. Interval in which weights can be sampled 

This is another parameter that is to be optimized in our case. This is the interval between h 

and –h in which we sample our weights. Actually, our sampling interval is set to –h/2, h/2, 

but the real problem that we face is determining the optimal value of h, in which our 

algorithm gives the best fit of the desired output. 

3.5. Conclusion 

In this chapter, we discussed about the training algorithms that we use to train ANNs. 

Furthermore, we classified those algorithms into supervised and unsupervised algorithms. 

Then we focused on our point of interest, i.e., Back Propagation algorithm. Then we gave 
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a brief proof of the BP algorithm with the notations that we use. At last, we discussed the 

problems that we face, when we build a neural network that is based on BP algorithm. In 

the next chapter, we will discuss the outcomes of our experiments and try to find the 

optimal values of the different parameters of our algorithm. 
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Chapter 4: Application to Character Recognition 
 

In this Chapter, the Optical Character Recognition (OCR) system based on Artificial 

Neural Networks (ANNs) is discussed. ANNs are frequently employed to solve sample-

recognition problems. One of these is, indeed, character recognition. The research work 

behind this thesis aims at recognizing printed characters by projecting them on different 

sized grids. The first step in the recognition process is the image acquisition, often followed 

by noise filtering, smoothing and normalization of the image. In this work, we resort to 

ANNs trained using the Back Propagation algorithm. In the proposed Character recognition 

system, each typed English letter is represented by a string of binary numbers that are used 

as input to a simple feature extraction system whose output, in addition to the input, are 

fed to an Artificial Neural Networks. Afterwards, the Feed Forward Algorithm gives 

insight into the enter workings of a neural network followed by the Back Propagation 

Algorithm which compromises Training, Error calculation, and Modifying Weights. 

(Prasad et al.) We will perform sensitive analysis on some parameters of BP algorithm and 

try to optimize them for the best performance of our ANN. 

4.1. Introduction 
 

OCR system converts the image obtained by scanning a text or a document into machine 

editable format. Recognition of printed characters is itself a challenging problem, 

especially when real world scenario (image may be noisy or degraded) is considered. In 

addition, variability in font types and sizes makes recognition a difficult task. A good 

character recognition approach must eliminate the noise after reading binary image data, 

smooth the image for better recognition, extract features efficiently, train the system and 
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classify patterns-(S. Barve). The aim of this thesis is to use ANNs to simplify the 

development of a character recognition application, still ensuring high quality of 

recognition and good performance. (Rókus, et al.). Our goal is to show the precision and 

speed of character recognition depending on the parameters of the implemented neural 

network later in this chapter; we will discuss every step of application to character 

recognition in detail. 

4.2. Character Recognition with MatLAB 
 

The algorithm that we are currently working on is completely designed using MatLAB.  

The problem definition of character recognition is not that simple, therefore, we have to 

define a path, and by following that path, we will achieve our desired goals. We can define 

the whole character recognition problem in to following major steps. 

 Creating Training and Validation Data sets 

 Training  

 Testing  

4.2.1. Creating Training and Validation Data 
 

To train and use ANNs properly, we have created sets of training data and validation data, 

which contain training inputs and corresponding desired outputs. We started from .png files 

of all the English alphabets and we converted them into binary matrices in which each 

column defines a character. We used ‘create_training_set_test’ function to create our 

training and validation data. We create training and validation data in the same way, 
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therefore, for the sake of simplicity; we will just focus on creating training data. Let us 

discuss in detail how this function works. The function can be called in MatLAB as follows, 

[trainingSet, trainingOutput] = create_training_set_test(path, fontSize, nc, nr) 

This function has four inputs and it returns two outputs. First input is the directory path of 

all the *.png files and each *.png file contains a character. The second input is font size, 

we have to describe the font size that we are working on, third and fourth inputs are number 

of columns and number of rows of the output binary matrices respectively. The outputs are 

training set and training output; these are two binary valued matrices, which contain our 

training data and corresponding desired output. 

This single function does following tasks: 

 Preprocessing – processing the data in the form needed. 

 Features extraction – we minimize the needed data with saving only the needed 

information. This will give us a vector with binary values. 

4.2.1.1. Preprocessing 
 

The preprocessing consists of two steps: 

 Binarization. 

 Segmentation. 

Our first goal is to convert that raw data into desired form. For this purpose, we use another 

function called ‘image_preprocessing_test’. This function can be called as follows: 

[imbw,imbw_lin]= image_preprocessing_test(img,nc,nr) 
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It produces a binary inverted image starting from img. When nc and nr are provided, it 

produces also a linearized image (of size nc*nr) and memorizes it into the matrix named 

imgbw. At this point, we have our desired binary image in matrix form. 

 

      Figure 4-1: The transformation of input data into a binary matrix 

The segmentation is the most important part of the preprocessing method to extract 

important details of every character used for the subsequent recognition task. After the 

segmentation, we have to decide which details are important for us. Next is the step of 

features extraction that we will discuss in next section. 

4.2.1.2. Features Extraction 
 

For feature extraction, we use another function inside ‘image_preprocessing_test’ called 

‘extract_subm’, which can be called in MatLAB as follows: 

[imbw_lin, s] = extract_subm(imbw,nc,nr) 
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This function produces a (nc*nr) matrix by cropping zeros rows and columns and 

padding with zeros if needed. After this stage, we get a binary image of the characters as 

shown in figure 4-2. 

 

 

After getting this binary image, which can also be represented as a binary matrix, we 

convert it into a column vector to use it as training data. For that purpose, we use another 

sub function inside extract_subm, which is called ‘fix_dim’. Which can be called in 

MatLAB as follows: 

B = fix_dim(A,nc,nr) 

It converts a matrix A of dimension nr x nc into a string of column vectors of size nc*nr. 

Finally, we can use that string of column vectors as our training set. 

4.2.1.3. Issues in creating the training sets  
 

Creation of the training sets is one of the most time-consuming phase when building an 

OCR. The first task after generating our segmented binary image is to find a way in which 

we can create training sets in a faster and reliable way (i.e., so that training sets do not have 

Figure 4-2: Binary image produced using 
create_training_set_test 
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noisy or mistaken data). To make this whole process faster we prepared another function 

that could create training sets in seconds, but it needed a reference training set. So 

eventually, we had to create at least one training set using the previous functions. We 

created multiple training sets using following specifications. 

Number of fonts 106 
Number of characters 26 

nc 100,105,110115,120,125 
nr 105,110,115,120,125,130 

Font size 11 
Table 4-1: Specification for creating training sets 

 

Number of fonts 22 
Number of characters 26 

nc 100,105,110115,120,125 
nr 105,110,115,120,125,130 

Font size 11 
Table 4-2: Specification for creating validation sets 

 

We first created a training set of 26*106 characters with font size 11 for nr=105 and nc=100 

and a validation set of 26*22 characters with font size 11 for nr=105 and nc=100, then we 

created all the other training and validation sets (for the different values of nr and nc 

depicted in the tables above), using another function that we designed especially for this 

purpose. We named that ‘create_training_set_new’ which can be called in MatLAB as 

follows, 

new_training_set = create_training_set_new’ (trainingSet,nr,nc,p,q,M) 

We can see that it gives a new training set whose elements are vectors of dimensions p*q 

starting from a training set whose elements are vectors of dimensions nr*nc. 

 trainingSet is the output of create training set 

 nr and nc are the dimensions of the trainingSet 
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 p and q are the dimensions of the new_training_set 

 M is the number of columns of trainingSet. 

The function simply append zeroes in the rows and columns of each vector in the previous 

training set. Thus, it only changes the size of the vectors from nr*nc to p*q by using zero 

padding. In conclusion, we created training sets containing 106*26 characters represented 

by vectors of length nc*nr, for the different values of nr and nc as depicted in Table 4-1. 

Similarly, we obtained different validation sets. 

4.3. Training the ANN  
 

This section deals with the training algorithm that we are using to train the network and the 

MatLAB functions associated with the algorithm. 

Chapter 3 introduced the BP algorithm and we gave a brief proof of that as well, while this 

chapter deals with its MatLAB implementation.  

The first function that we use for training is ‘train_neural_network’, the input and output 

arguments of this function are as follows: 

[weights_12, weights_23, trainingStep, elapsedTime] = 

train_neural_network(starting_weights_12, starting_weights_23, trainingSet, 

trainingOutput, eta, maxStep) 

 starting_weights_12 is the initial matrix of weight between input and hidden 

layer and is an input matrix of dimensions N2xM, where N2 is the number of 

hidden neurons and M is the size of an input vector, i.e., nr*nc. 
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 starting_weights_23 is the initial matrix of weights between hidden and output 

layer and is a matrix of dimension 26xN2, where 26 denotes the 26 alphabets 

whereas N2 is the number of neuron in the hidden layer. 

 trainingSet is the training set that we created before. 

 trainingOutput is the set of desired outputs. 

 eta is the learning rate. 

 maxStep is the maximum number of steps that our algorithm is allowed to take. 

Initial weights are sampled between an interval (–h/2,h/2) which is also a parameter to be 

optimized. This function in return gives outputs as follows: 

 weights_12 is the final matrix of weights between input and hidden layer that will 

be used for validation. 

 weights_23 is the final matrix of weights between hidden and output layer that 

will be used for validation. 

 trainingStep is the performance measure of the algorithm. i.e., is the number of 

steps necessary to accomplish the training.  

 elapsedTime is the time taken by the network to train. 

The activation function that we use for training our network is hyperbolic tangent-(Bekir 

K. et al.). Moreover, this function enforces back-propagation algorithm for training the 

ANN. Drawbacks of Back-propagation algorithm are well known in literature. Perhaps the 

best known is called “Local Minima”. This appears to be occurring because the algorithm 

tends to change the weights in such a manner as to cause the error to reduce, but the error 

may have to rise as part of a more general fall. If this is the case, the algorithm will be 

stuck (because it cannot go uphill) and the error will not decrease further. There are several 
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solutions to this problem. One is very simple and that is to reset the weights to different 

random numbers and try training again (this can also solve several other problems). 

Another solution is to add “momentum” to the weight change. This means that the weight 

change this iteration depends not just on the current error, but also on previous changes.  

A sub function inside ‘train_neural_network’ is used to define the activation function 

and we named it ‘activation_function’, which can be called in MatLAB as follows: 

[y, yd] = activation_function(x, type) 
 

This function returns the activation function y and its derivative yd computed on input x, 

whereas type refers to what kind of activation function we want. 

In this section, section we explained the functions that we use for training, the experimental 

results after training will be discussed later in this Chapter.  

4.4. Testing the ANN 
 

In this phase, we test our ANN with some parameters that define the performance of the 

algorithm and ANN as well. The main function we use for testing our ANN is named 

‘test_neural_network’ and can be called in MatLAB as follows: 

[testOutput, elapsedTime, pErr, nErr] = test_neural_network(weights_12, 

weights_23, validationSet, trainingOutput) 

This function accepts  input arguments as follows: 

 weights_12 is the final matrix of weights between input and hidden layer that we 

acquired after training and will be used for validation. 

 weights_23 is the final matrix of weights between hidden and output layer that we 

acquired after training and will be used for validation. 
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 validationSet is the input validation set that we created. 

 trainingOutput is the correct outputs corresponding to each validation input that 

we created. 

By giving these inputs, we get in return following output parameters: 

 testOutput is the output that we compare with training output. 

 elapsedTime is time taken to test the algorithm. 

 pErr is the percentage error between training output and test output. 

 nErr is number of errors occurred. 

This MatLAB function gives us the two important performance measures i.e. pErr and 

nErr. We will focus more on pErr, because it gives a better understanding of error. The 

goal is to optimize these parameters, lower the value of these parameters better the 

precision of our algorithm. In the next section, we will discuss the experimental results and 

try to find out the optimal values of eta, h, N2, nr and nc. 

 

4.5. Experimental Results  
 

As we discussed prior in this chapter (see section 4.2.1.3.), we created multiple training sets with 

some desired specifications (see Table 4-1). In particular, we have 36 different training sets 

containing all the 26 English characters for 106 different fonts, and font size 11. An element of 

these training sets is a vector of length nr*nc. Each training set corresponds to a couple of values 

for nr and nc (see Table 4-1). Similarly, we have created 36 different validation sets, where the 

fonts involved are not the same fonts used for the training sets (see Table 4-2). We carried out 

multiple training and testing sessions with different values of parameters nr, nc, eta, h and N2. The 



52 
 

results that we got from these experiments were quite amazing. Let us discuss how we carried out 

those experiments and their results. 

4.5.1. Optimization of nr and nc 
 

In this section, we focus the attention only on parameters nr and nc. In fact, we want to investigate 

if the size of the elements in the training sets affects the performance of BP algorithm both in terms 

of steps for accomplishing the training and in terms of correct recognition among the characters in 

the validation set. 

The specifications for the first experiment are as follows: 

Number of fonts for training 106 
Number of fonts for validation 22 

Number of characters 26 
nc 100,105,110115,120,125 
nr 105,110,115,120,125,130 

Font size 11 

eta 0.8 

h 0.8 

N2 80 

maxSteps 15000 
Table 4-3: Specification for the first experiment 

 

The task was to train the ANN over all the possible combinations of nr and nc, i.e., 36 

different training sets and analyze number of steps to train the network and percentage of 

errors in the recognition of characters of the validation set, for the values of the parameters 

given in Table 4-3. Furthermore, we trained our algorithm for 10 iterations for each 

combination of nr and nc, i.e., for this test, we trained and tested the algorithm 360 times 

to extract these results. Table 4-4 summarizes experimental results after training and testing 

the algorithm. 
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 Table 4-4: Mean values of number of steps  
                                                  and pErr for eta=0.8, h=0.8 and N2=80 

 

 

nr x nc No. Of Steps pErr

105x100 297.4 22.9

105x105 273.8 22.4

105x110 280.2 23.6

105x115 261.9 23.2

105x120 276.5 22.5

105x125 251.4 23.2

110x100 245.9 22.7

110x105 298.0 22.7

110x110 301.2 22.9

110x115 263.8 23.8

110x120 265.3 22.7

115x125 274.8 22.9

115x100 270.9 23.0

115x105 252.7 22.3

115x110 268.8 23.1

115x115 278.3 22.5

115x120 256.9 22.3

115x125 273.2 22.5

120x100 272.8 21.9

120x105 248.2 23.4

120x110 287.8 23.3

120x115 285.0 22.1

120x120 278.2 22.9

120x125 263.6 22.8

125x100 267.2 23.1

125x105 246.0 22.7

125x110 265.3 23.8

125x115 279.9 23.0

125x120 257.7 23.4

125x125 279.6 22.9

130x100 273.9 22.8

130x105 269.5 22.5

130x110 293.8 23.0

130x115 267.8 23.2

130x120 283.5 22.6

130x125 276.1 22.3

Mean Training Steps and Percentage Error
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In Table 4-4, we can observe that the lowest value for number of steps occurs when nr=110 

and nc=100, i.e., 245.9 and the second lowest is 246 for nr=125 and nc=105. Therefore, if 

we observe more, we can see that value of number of steps fluctuates between 245 and 300 

steps, which is not so significant. This result for number of steps means that the values of 

nr and nc do not affect so much the results. Therefore, we can say that the values of nr and 

nc do not affect the result in a very much. Figure 4-3 provides a better understanding of 

these results. We obtained similar results using different values of eta, N2 and h. 

 

Figure 4-3: Graphical representation of Table 4-4 
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4.5.2. Optimization of parameters eta, N2 and h for font size 11 
 

The specifications for the second experiment are as follows: 

Number of fonts for training 106 
Number of fonts for validation 22 

Number of characters 26 
Training sets (nr x nc) 105x100, 110x100, 120x105, 125x105 

Font size 11 

eta 0.4, 0.8, 1.2 

h 0.4, 0.6, 0.8, 1, 1.2 

N2 40, 60, 80, 100, 120 

maxSteps 15000 
Table 4-5: Specification for the optimization of eta, N2 and h for font size 11 

 

From the previous test, we chose four random training sets keeping in mind the optimal 

values of performance measures. A complete specification of parameters is given in 

Table 4-5. This time we trained our ANN again for 10 iterations with different values of 

eta, h and N2 and got following results.  

 

          Table 4-6: Mean values of Number of Training Steps for nr=105 and nc=100 for font size 11 

Eta h Eta h Eta h
100 100 100

120 120 120

40 40 40

60 60 60

80 80 80

100 100 100

120 120 120

40 40 40

60 60 60

80 80 80

100 100 100

120 120 120

40 40 40

60 60 60

80 80 80

100 100 100

120 120 120

40 40 40

60 60 60

80 80 80

100 100 100

120 120 120

40 40 40

60 60 60

80 80 80

Mean values of Number of training steps for nr=105 and nc=100

380.3

251.0

1

230.8

193.4

1604.4

585.8

329.6

1.2

192.6

168.8

1079.3

439.3

260.6

1.2

218.7

184.1

2279.6

745.1

347.5

Mean

1.2

0.4

525.5

375.7

1947.9

1302.7

490.4

0.6

208.7

208.7

970.0

384.5

237.5

0.8

208.8

182.9

913.4

145.3

1329.8

469.0

248.7

1

259.0

229.4

3490.2

920.2

452.3

6752.0

1857.5

657.0

598.7

515.8

10870.0

2231.0

911.5

Mean

9110

0.4

213.3

190.3

2704.2

649.1

288.8

0.6

174.4

132.9

1031.6

430.6

230.0

0.8

177.7

0.4

0.4

0.6

0.8

1

1.2

Mean

330.4

232.1

1355.2

560.0

359.5

351.0

268.0

2218.0

736.0

535.0

414.9

360.0

4499.0

1059.9

589.8

465.6

393.3
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                   Table 4-7: Mean values of percentage error for nr=105 and nc=100 for font size 11 

From Table: 4-6 and Table 4-7, we can extract that, for eta=0.8, h=0.4 and N2 120, we get 

the optimum value for number of steps, and the percentage error for these values is very 

low. However, for eta=1.2, h=0.4 and N2=120, we get the optimum value for percentage 

error but number of steps for this value are not satisfying. Therefore, we think that eta=0.8, 

h=0.4, and N2=120 give the best results in term of performance. Figure 4-7, show the 

graphical representation of Table 4-6 and table 4-7. Now we try to find out what happens 

when we change nr and nc. Let us test the ANN with second training set i.e. nr=110 and 

nc=100. 

 
 

 

 
 

 

Eta h Eta h Eta h
100 100 100

120 120 120

40 40 40

60 60 60

80 80 80

100 100 100

120 120 120

40 40 40

60 60 60

80 80 80

100 100 100

120 120 120

40 40 40

60 60 60

80 80 80

100 100 100

120 120 120

40 40 40

60 60 60

80 80 80

100 100 100

120 120 120

40 40 40

60 60 60

80 80 80

Mean values of percentage error for nr=105 and nc=100

20.4

17.9

1

19.5

18.3

24.5

23.9

22.0

1.2

19.5

17.7

24.0

22.2

20.8

1.2

22.3

20.6

24.2

24.2

23.9

Mean

1.2

0.4

9.6

8.9

11.0

10.0

9.7

0.6

13.8

12.6

16.2

17.2

14.8

0.8

17.0

15.9

21.2

20.9

23.1

23.2

23.0

1

21.9

20.8

25.3

24.8

23.3

25.1

25.9

27.0

26.9

29.0

24.5

25.5

26.6

Mean

9110

0.4

12.9

12.2

12.9

14.4

13.8

0.6

19.4

19.3

20.6

21.2

19.9

0.8

22.2

0.4

0.4

0.6

0.8

1

1.2

Mean

25.4

25.5

20.9

22.7

23.7

26.7

28.8

22.6

24.8

25.6

27.6

29.1

24.2

25.1

25.6

26.9

28.5
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We concluded from the first experiment that the values of nr and nc do not affect the results 

to a large extent. Therefore, Let us analyze the test results for another training set, i.e. 

nr=110 and nc=100, and if the conclusion of the first experiment holds true, we should get 

the same optimal values of eta, N2 and h. Following tables show the mean values of 

percentage error and number of steps after 10 trainings i.e. we trained our network 10 times 

for each combination of eta, N2 and h and we get following values. 

 

           Table 4-8: Mean values of Number of Training Steps for nr=110 and nc=100 for font size 11 

In table 4-8, we can see that best mean value for number of steps is 176 that occurs when 

eta=0.8, N2=120 and h=0.4, and these are the same values, that we got for nr=105 and 

nc=100. 

 

Eta h Eta h Eta h
100 100 100

120 120 120

40 40 40

60 60 60

80 80 80

100 100 100

120 120 120

40 40 40

60 60 60

80 80 80

100 100 100

120 120 120

40 40 40

60 60 60

80 80 80

100 100 100

120 120 120

40 40 40

60 60 60

80 80 80

100 100 100

120 120 120

40 40 40

60 60 60

80 80 80

1.2

489.1

1.2

246.7

1.2

204.1

406.6 185.9 163.3

6570.9 2189.7 1371.0

1532.1 647.9 463.4

769.8 371.1 254.5

1

520.1

1

265.9

1

217.4

463.9 248.8 187.7

11159.9 3333.5 1818.0

2539.6 788.6 552.2

1017.1 441.4 314.1

0.8

412.6

0.8

188.1

0.8

194.7

313.8 141.7 180.4

4112.2 1117.2 1016.8

1342.3 450.1 366.5

685.8 237.6 275.8

620.1

0.6

372.1

0.6

155.4

0.6

227.2

264.6 133.3 217.9

2753.2 1037.4 1115.2

783.7 361.6 391.2

465.3 221.9 245.5

Mean values of number of training steps for nr=110 and nc=100
Mean Mean Mean

0.4

0.4

271.8

0.8

0.4

228.0

1.2

0.4

406.1

249.0 175.7 400.8

1212.2 2359.9 4528.5

554.4 591.5 2190.3

382.5 280.0
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     Table 4-9: Mean values of percentage error for nr=110 and nc=100 for font size 11 

In table 4-9, we can analyze that the best mean percentage error value is 8.7, when eta=1.2, 

N2=120 and h=0.4, but number of steps for these values are excessively high. That is why 

we can easily say that eta=0.8, N2=120 and h=0.4 are best values because percentage error 

is not very high, it is just 12% and we have got a very low value for  number of steps as 

well. For the other two training sets, we got the same results. That is eta=0.8, N2=120 and 

h=0.4 are the optimum values for best performance of our algorithm. We can see the results 

of table 4-8 and table 4-9 in figure 4-5. 

 

Eta h Eta h Eta h
100 100 100

120 120 120

40 40 40

60 60 60

80 80 80

100 100 100

120 120 120

40 40 40

60 60 60

80 80 80

100 100 100

120 120 120

40 40 40

60 60 60

80 80 80

100 100 100

120 120 120

40 40 40

60 60 60

80 80 80

100 100 100

120 120 120

40 40 40

60 60 60

80 80 80

1.2

27.2

1.2

22.1

1.2

19.4

28.8 21.6 18.0

25.1 24.7 24.1

25.5 24.0 23.4

25.7 24.1 20.8

1

26.8

1

23.6

1

19.7

28.9 21.3 18.7

25.1 25.4 24.6

25.7 24.7 23.6

26.5 24.1 22.5

0.8

27.6

0.8

21.5

0.8

17.0

28.7 21.0 15.1

23.4 23.7 21.2

24.0 23.6 19.3

26.7 23.1 18.0

18.4

23.8 13.2 8.6

0.6

27.0

0.6

19.7

0.6

13.5

28.3 18.8 12.3

22.5 21.0 16.3

24.4 21.2 15.4

25.6 18.9 14.4

Mean values of percentage error for nr=110 and nc=100
Mean Mean Mean

0.4

0.4

25.0

0.8

0.4

13.0

1.2

0.4

9.1

25.6 12.0 8.7

21.4 13.8 18.5

21.9 14.1
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4.5.3. Optimization of parameters for font size 10 and 11 
 

In the previous test we found that, eta=0.8, N2=120 and h=0.4 turned out to be the optimum 

values for the best performance of our algorithm. In this test, we update the training set and 

introduce fonts of 10 points as well, that means this time our training set contain fonts of 

10 and 11 points, that makes our training set double the size of the training set used in the 

previous test. 

The specifications for the third test are as follows: 

Number of fonts for training 106 
Number of fonts for validation 22 

Number of characters 26 
Training sets (nr x nc) 105x100, 110x100, 120x105, 125x115, 

105x105 and 115x120 
Font size 10 and11 

eta 0.4, 0.8 

h 0.4, 0.8, 1.2 

N2 40, 60, 80, 100, 120 

maxSteps 15000 
Table 4-10: Specifications: optimization of eta, N2 and h for font size 10 and 11 

 

This time we changed some specification for out test, for example for this test we use only 

two values of eta i.e. 0.4 and 0.8. We also reduced the number of values of h from 5 to 3, 

that means, we will only use 0.4, 0.8 and 1.2, and we will conduct this test for 6 training 

sets with different values of nr and nc.  

To start with, the first thing to do was to create the new training sets with two font sizes 

i.e.10 and 11, and we used the same functions and procedure to create these training sets 

as per table 4-10. All the other procedures were same as used in second test. Let us now 

analyze the results of this test and then see if these tests again endorse the previous ones. 
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              Table 4-11: Mean values of No. of steps for eta=0.4 and 0.8, 

 nr=120 and nc=105 for font size 10 and 11 

Table 4-11 shows that, the algorithm uses minimum number of steps, when eta=0.8, 

N2=120 and h=0.4, that is the same result as we got in the previous test. Let us now see, 

what happens with percentage error. 

Eta h N2 Mean

100 930

120 754

40 5430

60 2734

80 1190

100 1701

120 1055

40 14834

60 6247

80 2817

100 3495

120 1792

40 15000

60 13525

80 6027

100 489

120 378

40 4444

60 1374

80 703

100 720

120 523

40 6169

60 2238

80 1183

100 1256

120 906

40 14999

60 5075

80 2295

Mean Values of No. Of steps for nr=120 and nc=105

1.2

0.80.8

0.4

1.2

0.4

0.4

0.8
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            Table 4-12: Mean values of percentage error for eta=0.4 and 0.8,  

nr=120 and nc=105 for font size 10 and 11 
 

Eta h N2 Mean

100 19.5

120 19.5

40 16.8

60 17.8

80 19.1

100 21.6

120 21.7

40 19.5

60 20.6

80 20.8

100 22.4

120 22.5

40 23.1

60 21.4

80 22.4

100 14.2

120 12.6

40 12.0

60 12.9

80 13.7

100 20.5

120 19.4

40 19.5

60 20.0

80 20.5

100 21.3

120 21.1

40 20.3

60 21.3

80 21.1

Mean Values of percentage error for nr=120 and nc=105

1.2

0.80.8

0.4

1.2

0.4

0.4

0.8
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Figure 4-8: Mean Values of No. of steps and pErr for nr=120 and nc=105 represented in 

form of surface graphs and line graphs 
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In Table 4-12, we can see that the best value for pErr occurs when eta=0.8, N2=40 and 

h=0.4, but for these values, number of steps is very high. Therefore, the second best value 

is 12.6% for eta=0.8, N2=120 and h=0.4. The results of this test for nr=120 and nc=105 are 

satisfying in terms that the previous test also gave similar result. We can see the graphical 

representation of the results for table 4-11 and 4-12 in figure 4-8. 

Let us now analyze a training set that has same value of nr and nc as in the previous test 

that we did for font size 11. Let us take nr=105 and nc=100 and train our ANN according 

to the specifications given in table 4-10 and see what happens. The behavior of the tests 

conducted until now tells us that the optimum values of the parameters should remain 

eta=0.8, N2=120 and h=0.4. Following are the tables for number of training steps and 

percentage error for training set 105x100 using font sizes 10 and 11. 
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Eta h N2 Mean

100 937

120 681

40 5386

60 2125

80 1368

100 1817

120 1034

40 14715

60 5405

80 3402

100 2854

120 1652

40 15000

60 13233

80 6865

100 531

120 381

40 4931

60 1233

80 668

100 775

120 499

40 5756

60 2262

80 1199

100 1242

120 791

40 13835

60 4883

80 2101

Mean Values of No. of steps for nr=105 and nc=100 for font size 10 and 11

1.2

0.80.8

0.4

1.2

0.4

0.4

0.8

Table 4-13: Mean values of number of training steps for 

nr=105, nc=100 and font sizes 10 and 11 
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Eta h N2 Mean

100 20.0

120 20.6

40 17.3

60 18.3

80 19.0

100 20.8

120 22.0

40 18.8

60 20.3

80 20.5

100 22.0

120 22.7

40 22.5

60 22.2

80 21.8

100 14.0

120 12.6

40 12.5

60 13.7

80 13.9

100 20.1

120 19.2

40 18.7

60 20.5

80 20.3

100 21.4

120 20.1

40 20.7

60 21.6

80 21.9

0.8

0.4

0.8

1.2

Mean Values of percentage error for nr=105 and nc=100 for font size 10 and 11

0.4

0.4

0.8

1.2

Table 4-14: Mean values of percentage error for nr=105, 

nc=100 and font sizes 10 and 11 
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Figure 4-9: Mean Values of No. of steps and pErr for nr=105 and nc=100 represented in form 

of surface graphs and line graphs 
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We can see in table 4-13 and 4-14 that the optimum value for number of training steps is 

for eta=0.8, N2=120 and h=0.4. Whereas we get an optimal value for percentage error for 

the same values of parameters. This value is not the optimum one, but it isoptimal enough 

to be considered as the best fit. Figure 4-9 provides a graphical visualization of the results 

obtained in tables 4-13 and 4-14. 

4.6. Conclusion 
 

From the experimental results, we get following important conclusions: 

 Values of nr and nc do not affect performance of ANN to large extent. 

 Our proposed ANN performs best for eta=0.8, N2=120 and h=04 for all values of 

nr and nc. This is the optimal choice taking into account the number of training 

steps and percentage of errors. 

 We get an optimal value for percentage error not the optimum when eta=0.8, 

N2=120 and h=0.4 for all the values of nr and nc, but that is the best trade off. 

 When we increase the number of font sizes, we increase the number of training 

inputs, thus, we see an increase in number of training steps. 
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Chapter 5: Conclusion and Future work  
 

The main idea of this thesis work was to validate the ANN and its parameters that was 

developed to work as an OCR. The major activities involved in this research were creating 

the training and validation sets, training the ANN and testing the ANN.  First, a training 

set of font size 11 and 106 font was created to train the neural networks with six different 

values of nr and nc (number of rows and number of columns respectively), nr and nc 

corresponds to the dimensions of the binary matrix that represents a single character. The 

ANN was trained for 36 different matrices using all possible values of nr and nc and 

parameters of BP algorithm are fixed (i.e. eta, N and h). Then ANN is validated for all the 

values of nr and nc. The results of this test proved that the performance of the ANN does 

not depend on nr and nc.  

After that, we trained the ANN with different values of parameters eta, N and h with four 

selected dimensions of nr and nc and font size 11. The experimental results suggested that 

the best values of eta, N and h, are 0.8, 120 and 0.4 respectively.  

Furthermore, another test was carried out but this time with a training set that contain fonts 

of size 11 and 10. Therefore, this time we had a larger training set. We trained the ANN 

and tested it and the results were the same as stated above. Therefore, we came to know 

that the change in the values of nr and nc does not affect the performance of the ANN to a 

large extent but the performance majors varry a lot when the different values of parameters 

of BP algorithm are used. The ANN performance is optimal, when the values of eta, N and 

h are 0.8, 120 and 0.4 respectively. 
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 Table 5-1: Experimental Results after Validation of data sets with font size 10 and 11 

In this thesis, we kept into account only English characters and the fonts, but the next step 

of the project is to validate the BP algorithm with mathematical formulae and then use it 

practically. As we discussed earlier in this thesis that the main idea is to develop an OCR 

that can be helpful in learning and education for visually impaired people, so most 

probably, the next phases will be actually implementing it as a software and then test it in 

real time with some volunteers. I hope this project proves to be a big success and we keep 

doing this kind of work in future as well. 

 

 

 

 

 

 

 

 

Parameters

nr

nc

eta

N2

h

Optimal value is 0.8 as it gives the best performnace 

Performnace is better as N2 increases

Performnace is better as h decreases

Experimental Results of Validation

Remarks

This parameters does not affect the ANN performance

This parameters does not affect the ANN performance

Optimal Values

N/A

N/A

0.8

120

0.4
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