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Abstract

The problem of correctly segmenting touching characters is an hard task to solve.
In the recent years, many methods and algorithms have been proposed without achiev-
ing a comprehensive solution. In this paper, a novel method based on fuzzy logic is
studied. The proposed method combines three features of touching characters that in
other studies have been exploited one at a time. The strategy is based on a 3–input/1–
output fuzzy inference system with fuzzy rules specifically optimized for segmenting
touching characters in the case of latin printed and handwritten characters. The sys-
tem performances are illustrated and supported by numerical examples that show an
optimal capability of segmenting touching characters. Moreover, numerical results
suggest that the method can be applied to many different datasets of characters by
means of a convenient tuning of the fuzzy sets and rules.

1 Introduction

Many studies deal with Optical Character Recognition systems (OCR) for the automatic
recognition of both printed and handwritten characters. An OCR is composed by two
main components: a pattern recognition algorithm and an image segmentation algorithm.
The pattern recognition is the crucial step to allow a proper character recognition and
leads the segmentation of an image to discover each single characters. In facts, errors
in characters segmentation affect performance of the pattern recognition algorithm more
than the degradation of the starting image [8].

One of the most difficult problem an image segmentation algorithm has to address is
the segmentation of touching characters [26], [27]. Common techniques exploit different
characterizing aspects of an image or the shape of the letters, such as vertical projection,
pitch estimation or character size, contour analysis, or segmentation–recognition coupled
techniques [13], [16]. Starting from these approaches, several methods have been developed
for performing optimal segmentation of touching characters. Kurniawan et al. [11] identify
touching positions in latin handwritten characters by means of self organizing feature maps
and a region–based approach. Different approaches involving thinning algorithms can be
found in [15] and [24]. In [30], Sharma et al. study the problem to detect arbitrarily-
oriented text from video frames. Cut positions in touching characters are evaluated using
the top distance profile. In [33] and [28], authors developed approaches by using genetic
algorithms. Rehman et al. [25] identify character boundaries in an image by using a set of
heuristic rules. The water reservoir algorithm has been exploited in some works like [23]

1



and [12]. Further methods can be foud in [1], [3], [34]. It is worth mentioning that some
authors in [21] and [4] also deal with segmenting mathematical expressions.

Generally, these strategies consider binarized images where the patterns are represented
by a matrix whose entries are 0 (white pixels) and 1 (black pixels). Then, a function
identifies the cutting position for each column of the matrix by evaluating some features
that characterize typical character positions in the text. These cut positions are chosen
depending on these values. Common functions implied are the ratio of the second difference
of the vertical projection (e.g., [9]) and the peak–to–valley (e.g., [14]). Other functions are,
e.g., based on number of black pixels, number of white pixels counted from the top of the
column to the first black pixel, crossing count (i.e., number of black to white transitions),
number of identical black (white) pixels with left (right) column, width to height ratio for
the remaining left (right) pattern after cutting (e.g., [2]). Another approach can be found
in [5], where the authors used the inverse crossing count, measure of blob thickness and
degree of middleness for defining a function that identifies when a column, a row, or a
diagonal is a cutting position.

However, the methods and approaches above mentioned do not provide a comprehen-
sive answer to the problem of segmenting touching characters. Indeed, their performances
are not ever optimal and they are affected by the specific set of characters involved in
the segmentation. Presently, there not exists a standard approach for the segmentaton of
touching characters. Thus, this is currently an active research field.

In this paper, we aim at combining some of the previous features, usually exploited one
at a time, by means of an original fuzzy logic approach in order to improve performances
in separating touching characters. Indeed, the selection of the features that characterize
touching positions is an art rather than a technique. In other words, the selection of the
features mainly depends on the experience of the authors. Thus, in this context, fuzzy logic
can be very useful, since it is congenial to capture and to code expert–based knowledge in
view of performing targeted simulations.

Fuzzy logic has been already exploited to perform image segmentation. For instance,
Garain and Chaudhuri [5] used fuzzy multifactorial analysis to combine some of the fea-
tures previously described. In [20], a survey on image segmentation techniques using fuzzy
clustering is presented. Fuzzy logic has been also exploited for developing segmentation–
recognition coupled techniques [6]. A non–linear fuzzy approach can be found in [29].
In [19], authors used edge corners and fuzzy logic to develop segmentation techniques
exploited to break down Captcha. Further approaches can be found in [7], [18], [31], [32].

In this paper, we propose a novel fuzzy approach that differs from the state of the art
in several aspects. Firstly, we combine by means of a fuzzy strategy some features that are
not ever exploited together in previous works. Secondly, we develop an original strategy
based on an inference system composed by 3–input/1–output with fuzzy rules specifically
optimized for the purpose of separating touching characters in the case of latin printed
and handwritten characters. The strength of our fuzzy strategy relies on the possibility
to adjust its parameters in such a way that they can fit the characteristics of the data set.
In other words, the parameters of the method are extracted a priori based on the different
characters in the data set.

The inference engine is based on the Mamdani model with if–then rules, minimax
set–operations, sum for composition of activated rules and defuzzification based on the
centroid method. We have chosen the Mamdani model since it is congenial to capture and
to code expert–based knowledge [17].

The paper is organized as follows. In Section 2, we present the fuzzy strategy conve-
niently developed for performing segmentation of touching characters. In section 3, we
present the numerical results that show the effectiveness of the proposed method. Specif-
ically, in Section 3.1, we describe the datasets used for simulations. Sections 3.2 and 3.3
are devoted to test the method on datasets of latin printed and handwritten characters,
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respectively. Finally, in Section 4 we present the conclusion.

2 Fuzzy strategy

In the following, we only focus on binarized images. Indeed, an image can be binarized
resorting on an empirically determined threshold by, e.g., the Otsu method [22] that is
one of the most used. In a binarized image, a pattern can be represented by a matrix
whose entries are 0 (white pixels) and 1 (black pixels). Generally, methods for segmenting
touching characters define a function based on some features that characterize cut posi-
tions. Then, such a function is evaluated for each column (row, or diagonal) of the matrix
and the cut position is chosen depending on these values. Classical functions of this kind
are the peak–to–valley function g and the function h defined as

g(i) =
V (li)− 2V (i) + V (ri)

V (i) + 1
, h(i) =

V (i− 1)− 2V (i) + V (i+ 1)

V (i)
,

where V (i) denotes the vertical projection function for the i-th column (row or diagonal),
li and ri are the peak positions on the left side and right side of i, respectively. The
column with the highest value of g (or h) is identified as the cutting column. A further
feature, that can suggests if the i–th column (row, or diagonal) can be a cut position, is the
distance f(i) between i and the center of the pattern. Indeed, generally, cutting columns
are located near to the center of the pattern. In this section, we combine functions f , g,
and h by means of a fuzzy strategy that conveniently balances these functions. For the
sake of simplicity, in the following we describe the fuzzy strategy focusing only on vertical
cuts, i.e., we focus only on columns of the patterns.

To design a suitable fuzzy strategy, some steps are required, so to introduce the notion
of a fuzzy degree qualifying a column i to be a cut position: for short ρ = ρ(i) ∈ [0, 1]. In
our model, the low values of ρ locate good cut positions. The strategy can be detailed by
means of the fuzzification of the functions f , g, h.

Given a pattern in a binarized image, let A, m, n, and c be the matrix of pixels of
the binarized image, the number of row of A, the number of column of A, and the central
column of A, respectively. In the following, when we refer to a column i of A, we refer to
the i–th column of A, i.e., we are considering the vector of length m whose elements are
the entries of the i–th column or we are only considering its position. This will be clear
from the context.

The central column c is evaluated by means of c = n+1
2 . When n is odd, c is clearly the

central column of A; when n is even, we consider as the central column the mean between
n
2 –th column and n

2 + 1, even if in this case c is not an integer number. In this way, for
each column i of A, we define its distance from the center of the pattern as f(i) = |c− i|.
In our fuzzy strategy, we take into account the normalized distance between each column
i and the central column c, i.e., we consider f̄(i) = f(i)

c .
Similarly, for each column i of A, instead of the functions g and h, we consider the

normalized functions

g̃(i) =
g(i)−minj∈C g(j)

maxj∈C g(j)−minj∈C g(j)
, h̃(i) =

h(i)−minj∈C h(j)

maxj∈C h(j)−minj∈C h(j)
,

where C = {1, 2, ..., n} is the set of the columns of A. Note that functions g̃ and h̃ are well–
defined since we consider matrices A where at least two columns are different. Finally, in
the following we will use the functions

ḡ = 1− g̃, h̄ = 1− h̃

so that low values of ḡ and h̄ identify cutting columns.
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(a) (b) (c)

Figure 1: Samples of, respectively, two (a), three (b), and four (c) handwritten cursive
touching character patterns.

Functions f̄ , ḡ, h̄ are fuzzified by defining convenient fuzzy sets and related membership
functions. The fuzzy degree ρ will be evaluated combining these functions by means of
some fuzzy rules. Fuzzy sets, membership functions, fuzzy rules will be specified in sections
3.2 and 3.3.

The inference engine will be the basic Mamdani model [17], with if–then rules, mini-
max set–operations, sum for composition of activated rules, and defuzzification based on
the centroid method. The Mamdani model is congenial to capture and to code expert–
based knowledge in view of performing targeted simulations; accordingly the system’s
performance is tuned by means of expert–based choices, heuristic criteria and non–linear
optimization methods.

3 Experimental tests

Although create a specific data set of touching character is not our main contribution, the
lacking of good examples on which we can work, force us to build a collection of touching
characters. In particular, we create two different data sets, one with handwritten cursive
characters, the other contains sided machine printed characters. In this section we present
the preprocessing for the setting of the experimental tests. In the first part, we show these
two dataset and we discuss our choices and methodology.

Due to the different characteristics of the data sets, chosen on purpose, in the remain
parts of the section we discuss the process to select the best parameters for running our
method on the two datasets. Our fuzzy strategy has a specif parameter meant to capture
the difference between one dataset to another. Such parameters are tailored on the specific
dataset characteristic by using an heuristic way and non–linear optimization methods.

Moreover, we would like to point out that the three features combined in our fuzzy
routine seem to be sufficient for obtaining optimal results in the segmentation. In facts,
adding further features appear to be useless. For instance, we have verified that the use
of the crossing count as a fourth fuzzy input did not lead to improvements.

3.1 Construction of the datasets

As stated in many state-of-the-art work, e.g. [11], unfortunately at the present a compre-
hensive dataset specific on touching characters is still missing. Given that, for researches
it is difficult to conduct experiment and to analyze any proposed method; in addition, it
is hard to fair compare performances and results obtained from different authors. We try
to overtake such an obstacle by proposing two datasets.
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(a) (b) (c)

Figure 2: Samples of, respectively, two (a), three (b), and four (c) machine printed touching
character patterns.

The first one is a dataset (dataset A) containing images of handwritten cursive char-
acters we have built relying on samples from a standard dataset, in fashion of [11]. In
particular we started from the CCC database [3]. The CCC database contains 57,293
samples of cursive characters that were manually extracted from images coming from dif-
ferent input sources, mainly related to American Post Services. They include both upper
and lower case letters. Each sample is stored as a binary matrix within the database,
and accompanied with information about the size of the matrix itself and the character
that is represented. Starting from the whole database, we developed a MATLAB script
to randomly extract 1’000 of its samples, taking care of maintaining a uniform distribu-
tion for all the characters chosen, both in their upper and lower version. These samples
were later combined and merged together to form two, three, and four touching character
patterns, each of whom is accompanied by a textual descriptor indicating the index of the
proper cut column (or columns, in the case of three and four multiple touching character
patterns). One sample of each category of patterns is shown in Figure 1. For instance, the
descriptor of the sample represented in Figure 1a states that the proper column to cut to
properly separate the ”e” and the ”h” characters is the 52th.

This merging is however unsupervised, and so improper combinations happen during
the process. So, we had to filter out the most unrealistic ones. Firstly, we discarded all
the samples with significant difference in their heights. Secondly, we manually removed
combinations without touching patterns (i.e., the characters were well separated) or with
touching patterns that seemed impossible to happen in real world. At the end, we kept
153 combinations, of which 139 represent two touching character patterns, and the other
are equally divided into three and four touching character patterns. The disproportion
because the common touching characters consist of two characters, while three or more
touching characters are rare [33]. Moreover, note that the quantity of combinations of
touching characters contained in our dataset is in compliance with other similar datasets
constructed using the CCC database (e.g., in [11] a dataset of 123 touching characters is
used).

The second one is instead a dataset (dataset B) containing images of sided machine
printed characters we have built resorting on a second MATLAB script. We have identified
a list of font types (namely Cambria, Candara, Georgia, Lucida Sans Regular, Times New
Roman and Verdana Bold) and sizes (namely 10, 20 and 25); for each type and size the
MATLAB script combines into images the lower characters from the alphabet to form
two, three, and four touching character patterns. Each image is accompanied by a textual
descriptor, which in this case indicates directly the characters represented. One sample
of each category of patterns is shown in Figure 2. For instance, the descriptor of the
sample represented in Figure 2a states that the images represent the string ”ax”. Also in
this case, we preferred to revise manually the dataset to remove missing, or unrealistic,
touching patterns. At the end, we kept the most promising 189 combinations (where 168
are composed by two touching characters), in order to define a challenging dataset to test
our approach.

5



3.2 Tests on latin printed characters

In the following, we perform segmentation of touching characters from the dataset B
of latin printed characters described in the previous section, accordingly to the fuzzy
strategy described in section 2. Fuzzy sets and membership functions related to f̄ , ḡ and
h̄ are defined accordingly to expert based choices. Moreover, their construction has been
optimized by using the Particle Swarm Optimization (PSO) algorithm [10] in order to
improve performances of our fuzzy strategy. Similarly the fuzzy rules (described in the
following) are tuned using both heuristic criteria and the PSO algorithm.

Given a matrix A as defined in section 2, for each column i of A, f̄(i), ḡ(i) and h̄(i) are
evaluated and the degree ρ(i) is provided by the following inference scheme that includes
three inputs (fuzzification of f̄ , ḡ, h̄) and one output (cutting degree ρ). The column i
with the lowest value of ρ is considered as the cut column.

The function f̄ is fuzzified by defining the following fuzzy sets:

• if f̄(i) ≤ 0.35, then distance from the center of the pattern is Low ;

• if 0̄.15 ≤ f(i) ≤ 0.75, then distance from the center of the pattern is Medium;

• if f̄(i) ≥ 0.5, then distance from the center of the pattern is High.

For the function ḡ, we define the following fuzzy sets:

• if ḡ(i) ≤ 0.4, then ḡ(i) is Low ;

• if 0.2 ≤ ḡ(i) ≤ 0.5, then ḡ(i) is Medium;

• if ḡ(i) ≥ 0.45, then ḡ(i) is High.

The function h̄ is fuzzified by means of the following fuzzy sets:

• if h̄(i) ≤ 0.4, then h̄(i) is Low ;

• if 0̄.1 ≤ h(i) ≤ 0.75, then h̄(i) is Medium;

• if h̄(i) ≥ 0.5, then h̄(i) is High;

Figures 3, 4, and 5 show the membership functions of the previous fuzzy sets.
Finally, for the fuzzy output ρ we define the following fuzzy sets, whose membership

functions are depicted in Figure 6:

• if ρ(i) ≤ 0.5, then ρ(i) is Low ;

• if 0.4 ≤ ρ(i) ≤ 0.6, then ρ(i) is Medium;

• if ρ(i) ≥ 0.5, then ρ(i) is High;

The inference system is based on the following rules, that combine the three inputs
f̄(i), ḡ(i), h̄(i) in order to produce the fuzzy output ρ(i), for each column i of A:

1. if f̄(i) is Low and h̄(i) is Low, then ρ(i) is Low;

2. if f̄(i) is Low and ḡ(i) is not High and h̄(i) is not Low, then ρ(i) is Low;

3. if f̄(i) is Low and ḡ(i) is High and h̄(i) is Medium, then ρ(i) is Medium;

4. if f̄(i) is Medium and h̄(i) is not High, then ρ(i) is Medium;

5. if f̄(i) is Medium and ḡ(i) is Low and h̄(i) is High, then ρ(i) is Medium;

6. if f̄(i) is High and ḡ(i) is not High and h̄(i) is Low, then ρ(i) is Medium;
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7. if f̄(i) is High and ḡ(i) is Low and h̄(i) is Medium, then ρ(i) is Medium;

8. if f̄(i) is Low and ḡ(i) is High and h̄(i) is High, then ρ(i) is High;

9. if f̄(i) and ḡ(i) and h̄(i) are not Low, then ρ(i) is High;

10. if f̄(i) and ḡ(i) are High, then ρ(i) is High.

The touching characters in dataset B are correctly segmented in the 96.1% of the
cases. For evaluating the correctness of the segmentation, we used a pattern recognition
algorithm constructed by a neural network trained on the characters that compose the
dataset B. We consider that touching character are correctly segmented when the pattern
recognition algorithm correctly recognizes the characters after the segmentation.

Simulations show that the fuzzy combination of the functions f, g, h improves the
correct identification of the cutting column with respect to their separated use.

To assess the performances of the fuzzy strategy compared to the usage on only the
functions g and h, a numerical example is reported below. Let us consider the touching
characters ”vu” (font Times New Roman) depicted in Figure 7. Our fuzzy routine correctly
identifies the cutting column as the column 12 which is assigned the minimum value of ρ
among all the columns of the pattern. Specifically, we obtain ρ(12) = 0.1924. The fuzzy
procedure performance is shown in Figure 8, with application to the column 12. On the
other hand, both g and h separately locate the column 16 as the cutting column. Indeed,
we can observe that, e.g., h(16) = 8 that is greater than h(i), for i = 1, ..., 21, i 6= 16,
for example h(12) = 0. In Table 1, we report the values of f̄ , ḡ, h̄, ρ for each column of
the previous pattern (except for the first and the last column that are not surely cutting
columns).

Table 1: Values of f̄ , ḡ, h̄, ρ for the columns of the touching characters ”vu” (excluded
first and last column)

Column f̄ ḡ h̄ ρ

2 0.8182 0.4545 0.7778 0.7849
3 0.7273 0.6818 0.8333 0.8123
4 0.6364 0.8409 0.9167 0.7908
5 0.5455 0.8523 0.9111 0.8073
6 0.4545 0.8333 0.9333 0.8102
7 0.3636 0.6818 0.8148 0.7949
8 0.2727 0.6818 0.8889 0.8047
9 0.1818 0.6818 0.9259 0.8169
10 0.0909 0.5303 0.8889 0.8169
11 0 0.2273 0.7778 0.1984
12 0.0909 0.2273 0.8889 0.1924
13 0.1818 0.2273 0.1111 0.2078
14 0.2727 0.9343 0.9722 0.8047
15 0.3636 0.9205 1 0.7949
16 0.4545 0 0 0.5000
17 0.5455 0 0.7778 0.6305
18 0.6364 0.3788 0.9556 0.7302
19 0.7273 0.9091 0.9753 0.8123
20 0.8182 1 0.9877 0.8169

3.3 Tests on latin handwritten characters

In the following, we perform segmentation of touching characters from the dataset A of
latin handwritten characters. Similarly to the previous section, fuzzy sets, membership
functions, and fuzzy rules are defined accordingly to expert based choices and further
optimized by the PSO algorithm. Features of the dataset A are greatly different from
dataset B. For instance, touching positions in dataset B are often near to the center of
the pattern. In the case of dataset A, cutting columns may occur more frequently at high
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Figure 3: Membership functions of the fuzzy sets related to f̄ (for dataset B)

Figure 4: Membership functions of the fuzzy sets related to ḡ (for dataset B)

Figure 5: Membership functions of the fuzzy sets related to h̄ (for dataset B)

Figure 6: Membership functions of the fuzzy sets related to ρ (for dataset B)
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distance from the center. On the other hand, the peak to valley function seems to have
better performances in the case of the dataset A. Moreover, the optimization conducted by
using the PSO algorithm allows to highlight properties and connections among functions
f, g, h not noticeable at a glance. All these features are reflected in the following definition
of fuzzy sets, membership functions, and fuzzy rules.

The fuzzy sets related to f̄ are defined by

• if f̄(i) ≤ 0.45, then distance from the center of the pattern is Low ;

• if 0̄.25 ≤ f(i) ≤ 0.55, then distance from the center of the pattern is Medium;

• if f̄(i) ≥ 0.5, then distance from the center of the pattern is High.

For the function ḡ, we define the following fuzzy sets:

• if ḡ(i) ≤ 0.2, then ḡ(i) is Low ;

• if 0.15 ≤ ḡ(i) ≤ 0.55, then ḡ(i) is Medium;

• if ḡ(i) ≥ 0.25, then ḡ(i) is High.

The fuzzy sets related to h̄ are defined by

• if h̄(i) ≤ 0.3, then h̄(i) is Low ;

• if 0̄.15 ≤ h(i) ≤ 0.65, then h̄(i) is Medium;

• if h̄(i) ≥ 0.5, then h̄(i) is High;

Figures 9, 10, and 11 show the membership functions of the previous fuzzy sets.
Finally, for the fuzzy output ρ we define the following fuzzy sets, whose membership

functions are depicted in Figure 12:

• if ρ(i) ≤ 0.4, then ρ(i) is Low ;

• if 0.2 ≤ ρ(i) ≤ 0.65, then ρ(i) is Medium;

• if ρ(i) ≥ 0.4, then ρ(i) is High;

The inference system is based on the following rules, that combine the three inputs
f̄(i), ḡ(i), h̄(i) in order to produce the fuzzy output ρ(i), for each column i of the matrix
of pixels:

1. if f̄(i) is not High and ḡ(i) is not High and h̄(i) is Low, then ρ(i) is Low;

2. if f̄(i) is Low and ḡ(i) is Low and h̄(i) is Medium, then ρ(i) is Low;

3. if f̄(i) is Low and ḡ(i) is High, then ρ(i) is Medium;

4. if ḡ(i) is Medium and h̄(i) is Medium, then ρ(i) is Medium;

5. if f̄(i) is High and ḡ(i) is Low, then ρ(i) is Medium;

6. if f̄(i) is Medium and ḡ(i) is Low and h̄(i) is Medium, then ρ(i) is Medium;

7. if f̄(i) is High and ḡ(i) is Medium and h̄(i) is Low, then ρ(i) is Medium;

8. if f̄(i) is Medium and ḡ(i) is High, then ρ(i) is High;

9. if f̄(i) is High and ḡ(i) is High, then ρ(i) is High;

10. if f̄(i) is High and ḡ(i) is Medium and h̄(i) is High, then ρ(i) is High.
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Figure 7: Touching characters ”vu” font Times New Roman

Figure 8: Application of the fuzzy inference system to the column 12 of the pattern ”vu”

Figure 9: Membership functions of the fuzzy sets related to f̄ (for dataset A)

Figure 10: Membership functions of the fuzzy sets related to ḡ (for dataset A)
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The touching characters in dataset A are correctly segmented in the 81.1% of the cases.
Let us remember that in dataset A we have stored the textual descriptor indicating the
index of the proper cut column. We consider a correct segmentation when the routine
locates such a column. Let us note that CCC database provides a challenging set of
characters for segmentation purposes. The only reference, where segmentation of touching
characters obtained from CCC database is performed similarly to this section, is [11]
whose authors obtained correct segmentation in the 76.2% of the cases. Moreover, authors
considered percentage of inaccurate segmentation (i.e., when a cutting column is found
around the correct position; specifically we consider inaccurate segmentation when the cut
position is distant at most 5 columns from the exact position). In this case, percentage of
segmentation increases to 91.9%, whereas we get 88.9%. Let us observe that these results
are not well comparable, since our dataset A and dataset used in [11] are different, even
if they are obtained starting from the same CCC database.

Some numerical results showing the behavior of our method are reported below, where
segmentation is performed on touching characters ”eh”, ”rt”, ”xm”, and ”ao” depicted in
Figures 1a, 13a, 13b, and 13c, respectively.

For the touching characters ”eh”, our fuzzy routine identifies the correct cutting column
as the column 52, whereas function f̄ assumes the lowest value in correspondence of
the column 56, function ḡ in correspondence of columns 34,35,36,37, and function h̄ in
correspondence of the column 15.

For the touching characters ”rt”, our fuzzy routine identifies the correct cutting col-
umn as the column 61, whereas function f̄ , ḡ, and h̄ identify the cutting position in
correspondence of the columns 51, 61, and 70, respectively.

For the touching characters ”xm”, our fuzzy routine identifies the correct cutting
column as the column 75, whereas function f̄ , ḡ, and h̄ identify the cutting position
in correspondence of the columns 79, 72, and 137, respectively.

Finally, for the touching characters ”ao”, our fuzzy routine identifies the correct cutting
column as the column 43, whereas function f̄ assumes the lowest value in correspondence
of columns 48 and 49, function ḡ in correspondence of the column 38, and function h̄ in
correspondence of the column 43.

In Figures 14 and 15, we show the cutting columns found by ρ, ḡ, and h̄ related
to touching characters ”eh” and cutting columns found by ρ, f̄ , h̄ related to touching
characters ”rt”, respectively.

Note that we do not report values of ρ, f̄ , ḡ, h̄ for each column since these patterns
have usually more than 100 columns.

4 Conclusion

A fuzzy approach for segmentation of touching characters has been presented. The pro-
posed method combines three classical features of touching characters usually exploited
one at a time. Experiments have been conducted on two very different datasets composed
by latin printed and handwritten characters, respectively. Fuzzy sets, membership func-
tions, and fuzzy rules, which characterize the fuzzy inference scheme, have been properly
constructed by means of expert–based choices, heuristic criteria, and the PSO algorithm
for each dataset. Numerical results are encouraging and show that the proposed method
has an optimal capability of correctly separating touching characters and may be adjusted
for very different varieties of characters (not only for the types considered in simulations).
Moreover, the present study shows that the simple functions f , g, h can be sufficient to
manage the segmentation of touching characters. In fact, some experiments (not pre-
sented here) show that addition of other inputs in the fuzzy routine does not provide
significant improvements. This is surely a perspective that should be further investigated
and motivated. Indeed, looking at perspective advancements, the following issues could
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be addressed in future works:

• study of characterization of performance improvements when adding further features
as inputs in the fuzzy inference system;

• experiments on further datasets not involving latin characters;

• experiments on segmentation of formulae;

• use of fuzzy models different form the Mamdani one (as, e.g., the Sugeno model).
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Figure 11: Membership functions of the fuzzy sets related to h̄ (for dataset A)

Figure 12: Membership functions of the fuzzy sets related to ρ (for dataset A)

(a) (b) (c)

Figure 13: Touching characters ”rt”, ”xm”, and ”ao” extracted from the CCC database.

(a) (b) (c)

Figure 14: Cutting postions located by ρ (a), ḡ (b), and h̄ (c).
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(a) (b) (c)

Figure 15: Cutting postions located by ρ (a), f̄ (b), and h̄ (c).
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