
A Bayesian approach for initialization of weights in

backpropagation neural net with application to character

recognition

Nadir Murru1, Rosaria Rossini

Department of Mathematics
University of Turin

Via Carlo Alberto 8/10, Turin, Italy
nadir.murru@unito.it
rossini@di.unito.it

Abstract

Convergence rate of training algorithms for neural networks is heavily affected by
initialization of weights. In this paper, an original algorithm for initialization of
weights in backpropagation neural net is presented with application to character
recognition. The initialization method is mainly based on a customization of the
Kalman filter, translating it into Bayesian statistics terms. A metrological approach
is used in this context considering weights as measurements modeled by mutually
dependent normal random variables. The algorithm performance is demonstrated
by reporting and discussing results of simulation trials. Results are compared with
random weights initialization and other methods. The proposed method shows an
improved convergence rate for the backpropagation training algorithm.

Keywords: backpropagation algorithm; Bayesian statistics; character recognition;
Kalman filter; neural network.

1. Introduction

In the last decades, neural networks have generated much interest both from
a theoretical point of view and for their several applications in complex problems,
such as function approximations, data processing, robotics, computer numerical
control. Moreover, neural nets are particularly exploited in pattern recognition
and consequently can be conveniently used in the realization of Optical Character
Recognition (OCR) software.

An artificial neural network (ANN) is a mathematical model designed as the
structure of the nervous system. The model was presented for the first time by Mc-
Culloch and Pitts [26] and involves four main components: a set of nodes (neurons),
their connections (synapses), an activation function that determines the output of
each node and a set of weights associated to the connections.

Initialization of weights heavily affects performances of feedforward neural net-
works [36], as a consequence many different initialization methods have been studied.
Since neural nets are applied to many different complex problems, these methods
have fluctuating performances. For this reason, random weight initialization is still

1Corresponding author: nadir.murru@gmail.com

Preprint submitted to Neurocomputing March 7, 2016

the most used method also due to its simplicity. Thus, the study of new weight
initialization methods is an important research field in order to improve application
of neural nets and deepen their knowledge.

In this paper we focus on feedforward neural nets trained by using the Backprop-
agation (BP) algorithm, which is a widely used method of training. It is well–known
that convergence of BP neural net is heavily affected by initial weights [4], [36], [24],
[1].

Different initialization techniques have been proposed for feedforward neural
nets, such as adaptive step size method [32] and partial least squares method [25].
Hsiao et al. [18] applied the partial least squares method to BP network. Duch et
al. [10] investigated the optimal initialization of multilayered perceptrons by means
of clusterization techniques. Varnava and Meade [37] constructed an initialization
method for feedforward neural nets by using polynomial bases.

Kathirvalavakumar and Subavathi [21] proposed a method that improves con-
vergence rate exploiting Cauchy inequality and performing a sensitivity analysis.
An interval based weight initialization method is presented in [35], where authors
used the resilient BP algorithm for testing. Adam et al. [2] treated the problem
of initial weights in terms of solving a linear interval tolerance problem and tested
their method on neural networks trained with BP algorithm.

Yam et al. [39] evaluated optimal initial weights by using a least squares method
that minimizes the initial error allowing convergence of neural net by a reduced
number of steps. The method is tested on BP neural net with application to charac-
ter recognition. Other different approaches can be found in [11], [3], [23], [28] where
authors focused on BP artificial neural network.

A comparison among several weight initialization methods can be found in [29],
where the authors tested methods on BP network with hyperbolic tangent transfer
function.

In this paper, we propose a novel approach based on a Bayesian estimation of
initial weights. Bayesian estimation techniques are widely used in many different
contexts. For instance, in [8] authors developed a customization of the Kalman filter,
translating it into Bayesian statistics terms. The purpose of this customization was
to address metrological problems. Here, we extend such an approach in order to
evaluate an optimized set of initial weights for BP neural net with sigmoidal transfer
function. Through several simulations we show the effectiveness of our approach in
the field of character recognition.

The paper is structured as follows. In Section 2, we briefly recall the BP training
algorithm. In Section 3 we discuss a novel approach for weight initialization in BP
neural nets using a Bayesian approach derived by a customization of the Kalman
filter. In Section 4, we discuss the setting of some parameters and we show exper-
imental results on the convergence of BP neural net in character recognition. Our
Bayesian weight initialization method is compared with classical random initializa-
tion and other methods. A sensitivity analysis on some parameters is also presented
here. Section 5 concludes the paper.

2. Overview of Backpropagation training algorithm

In this section we present an overview of the BP training algorithm introducing
some notation.

Let us consider a feedforward neural network with L layers. Let N(i) be the
number of neurons in layer i, for i = 1, ..., L, and w(k) be the weight matrix N(k)×

2

N(k − 1) corresponding to connections among neurons in layers k and k − 1, for

k = 2, ..., L. In other words, w
(k)
ij is the weight of connection between i–th neuron

in layer k and j–th neuron in layer k − 1. In the following, we will consider biases
equal to zero for seek of simplicity.

Artificial neural networks are trained over a set of inputs so that the neural
net provides a fixed output for a given training input. Let us denote X the set of
training inputs and n = |X| the number of different training inputs. An element
x ∈ X is a vector (e.g., a string of bit 0 and 1) whose length is usually equals to
N(1). In the following, bold symbols will denote vectorial quantities.

Let a
(k,x)
i be the activation of neuron i in layer k given the input x:{

a
(1,x)
i = σ(xi)

a
(k,x)
i = σ

(∑N(k−1)
j=1 w

(k)
ij a

(k−1,x)
j

)
, k = 2, ..., L

,

where σ is the transfer function. In the following, σ will be the sigmoidal function.
Moreover, let us denote z

(k,x)
i the weighted input to the activation function for neuron

i in layer k, given the input x:{
z
(1,x)
i = xi

z
(k,x)
i =

∑N(k−1)
j=1 w

(k)
ij a

(k−1,x)
j , k = 2, ..., L

.

Using vectorial notation, we have{
z(1,x) = x, a(1,x) = σ(z)

z(k,x) = w(k)a(k−1,x), a(k,x) = σ(z(k,x)), k = 2, ..., L
.

Finally, let y(x) be the desired output of the neural network corresponding to input
x. In other words, we would like that a(L,x) = y(x), when neural net processes input
x. Clearly, this depends on weights w

(k)
ij and it is not possible to know their correct

values a priori. Thus, it is usual to randomly initialize values of weights and use a
training algorithm in order to adjust their values. In Algorithm 1, the BP training
algorithm is described.

3. Bayesian weight initialization based on a customized Kalman filter
technique

The Kalman filter [20] is a well–established method to estimate the state wt

of a dynamic process at each time t. The estimation w̃t is obtained balancing
prior estimations and measurements of the process wt by means of the Kalman
gain matrix. This matrix is constructed in order to minimize the mean–square–
error E[(w̃t − wt)(w̃t − wt)

T]. Estimates attained by Kalman filter are optimal
under such diverse criteria, like least-squares or minimum-mean-square-error, and
its practice is developed with application to several fields.

The Kalman filter has been successfully used with neural networks [16]. In this
context, training of neural networks is treated as a non–linear estimating problem
and consequently the extended Kalman filter is usually exploited in order to derive
new training algorithms. Many modifications of the extended Kalman filter exist,
thus different algorithms have been developed as, e.g., in [34], [38], [15], [30]. How-
ever, extended Kalman filter is computationally complex and needs tuning several
parameters that makes its implementation a difficult problem (see, e.g., [19]).

3

Algorithm 1: Backpropagation training algorithm

1 Data:
2 L number of layers
3 N(k) number of neurons in layer k, for k = 1, ..., L

4 w
(k)
ij initial weights, for i = 1, ..., N(k), j = 1, ..., N(k − 1), k = 2, ..., L

5 X set of training inputs, n = |X|
6 y(x) desired output for all training inputs x ∈ X
7 η learning rate

8 Result: w
(k)
ij final weights, for i = 1, ..., N(k), j = 1, ..., N(k − 1), k = 2, ..., L,

such that a(L,x) = y(x), ∀x ∈ X
9 begin

10 while ∃x ∈ X : a(L,x) 6= y(x) do
11 for x ∈ X do // for each training input

12 a(1,x) = σ(x)
13 for k=2,...,L do
14 z(k,x) = w(k)a(k−1,x), a(k,x) = σ(z(k,x))

15 d(L,x) = (a(L,x)−y(x))�σ′(z(L,x)), // � componentwise product

16 for k=L-1,...,2 do

17 d(k,x) = ((w(k+1))Td(k+1,x))� σ′(z(k,x)) // right superscript

T stands for transpose operator

18 for k=L,...,2 do

19 w(k) = w(k) − η
n

∑
x∈X d(k,x)(a(k−1,x))T

In this section, we show that classical Kalman filter could be used in place of
the extended version, constructing a simplified Kalman filter used in combination
with BP algorithm in order to reduce computational costs. The motivations about
using Kalman filter and proposing a novel approach can be summarized as follows:
Kalman filter is widespread in several applied fields in order to optimize perfor-
mances (including neural networks); it produces optimal estimations under diverse
and well–established criteria; it has been used with neural networks mainly in the
extended version with the problems above specified.

Let the dynamic of the process be described by the following equation:

wt+1 = Atwt +Btut + pt (1)

where ut,pt are the optional control input and the white noise, respectively. Matrices
At, Bt are used to relate the process state at the step t+ 1 to the t–th process state
and to the t–th control input, respectively.

We now introduce the (direct) measurement values of the process mt as:

mt = wt + rt

where rt represents measurements uncertainty. Given that, a simplified version of
the estimation w̃t produced by the Kalman filter can be represented as follows:

w̃t = w−t +Kt(mt −w−t) (2)

4

where Kt is the Kalman gain matrix and

w−t = At−1w̃t−1 +Bt−1ut−1

for a given initial prior estimation w−0 of w0.
As stated in the introduction, the Kalman filter has been applied to dimensional

metrology by D’Errico and Murru in [8]. The aim of the authors was to minimize the
error of measurement instrumentations deriving a simplified version of the Kalman
gain matrix by using the Bayes theorem and considering components of each state
of the process wt as mutually independent normal random variables.

In this section, we extend such an approach in order to optimize weights initial-
ization of neural networks. In particular, we introduce a possible correlations among
components of wt and we consider the weights as processes whose measurements are
provided by random sampling. Furthermore, in the following section, we will specify
the construction of some covariance matrices necessary to apply the Kalman filter
in this context.

Using the above notation, let Wt and Mt be multivariate random variables such
that

f(Wt) = N (w−t , Qt), f(Mt|Wt) = N (mt, Rt), 0 ≤ t ≤ tmax (3)

where N (µ,Σ) is a Gaussian multivariate probability density function with mean µ
and covariance matrix Σ. In (3), the random variable Wt models prior estimations
and Qt is the covariance matrix whose diagonal entries represent their uncertainties
and non–diagonal entries are correlations between components of w−t . Similarly,
Mt|Wt models measurements and Rt is the covariance matrix whose entries describe
same information of Qt related to mt.

The Bayes theorem states that

f(Wt|Mt) =
f(Mt|Wt)f(Wt)∫ +∞

−∞ f(Mt|Wt)f(Wt)dWt

where f(Wt|Mt) is called the posterior density, f(Wt) the prior density and f(Mt|Wt)
the likelihood. We have

f(Wt|Mt) ∝ N (w−t , Qt)N (mt, Rt) = N (w̃t, Pt)

where

w̃t = (Q−1t +R−1t)−1(Q−1t w−t +R−1t mt), Pt = (Q−1t +R−1t)−1.

In metrological terms, diagonal entries of Pt can be used for type B uncertainty
treatment (see the guide [6]) and the expected value of the posterior Gaussian
f(Wtmax|Mtmax) is the final estimate of the process.

We can apply this technique to weights initialization considering processes wt(k),
for k = 2, ..., L, as non–time–varying quantities, i.e.,

wt+1(k) = wt(k) + pt(k) (4)

whose components are the unknown values of weights w(k), for k = 2, ..., L, of the
neural net such that a(L,x) = y(x). Eq. (4) is the simplified version of (1), i.e.,
describes the dynamics of our processes.

5

The goal is to provide an estimation of initial weights to reduce the number of
steps that allows convergence of BP neural net.

Thus, for each set w(k) we consider initial weights as unknown processes and
we optimize randomly generated weights (which we consider as measurements of
the processes) with the above approach. In these terms, we derive an optimal
initialization of weights by means of the following equations:

w̃t = (Q−1t +R−1t)−1(Q−1t w−t +R−1t mt)

Qt+1 = (Q−1t +R−1t)−1

w−t+1 = w̃t

(5)

for t varying from 0 to tmax and for each set of weights w(k). For the sake of simplicity
we omitted dependence from k in the above equations. In Equations (5), the initial
state w−0 of wt is a prior estimation of w0 that should be provided. Moreover,
covariance matrices Q0 and Rt must be set in a convenient way. First equation in
(5) is the metrological realization of the Kalman–based equation (2). From previous
equations, we derive the Kalman gain matrix as

Kt = (Q−1t +R−1t)−1R−1t .

Indeed, we have that I −Kt = (Q−1t +R−1t)−1Q−1t , where I is the identity matrix.
In the following section we discuss the setting of these parameters and we also

provide the results about the comparison of our approach to random initialization
with application to character recognition.

4. Numerical results

In this section, we explain the process of our weights initialization and the in-
volved parameters with particular attention to the structure of the covariance matri-
ces, Section 4.1. To evaluate performances of the BP algorithm with random weights
initialization (RI) against Bayesian weights initialization (BI) provided by Algorithm
2, we apply neural nets in character recognition. In particular, we discuss the re-
sults of our experimental evaluation about the comparison of our approach with a
random approach initialization conduct in a field of printed character recognition,
taking into account convergence rate, Section 4.2. In this section we use a neural
net with 3 layers and sigmoidal activation function. Afterwards, we train BP neural
nets (with 3 and 5 layers, using both sigmoidal and hyperbolic tangent activation
functions) on the MNIST database for the recognition of handwritten digits, Section
4.3. In these simulations, we also take into account classification accuracy. Finally,
we compare BI method with other methods in Section 4.4. These experiments show
the advantage that our approach provides in terms of number of steps used to train
the artificial neural network.

4.1. Parameters of weights initialization algorithm

The method of weights initialization described in Section 3 is presented in Algo-
rithm 2.

Since we do not have any prior knowledge about processes w(k), the random
variable W0(k), which models initial prior estimation, is initialized with the normal

distribution N (0,
1

ε
I), where ε is a small quantity. In our simulations, we will use a

fixed ε = 10−5. Note that such an initialization is a standard [34].

6

Algorithm 2: Weights initialization algorithm based on Kalman filter

1 Data:
2 L number of layers
3 N(k) number of neurons in layer k, for k = 1, ..., L
4 X set of training inputs, n = |X|
5 y(x) desired output for all training inputs x ∈ X
6 Q0(k), for k = 2, ..., L

7 w−0 (k) prior estimation of w̄(k), for k = 2, ..., L

8 m0(k) measurement of w̄(k), for k = 2, ..., L
9 R0(k), for k = 2, ..., L

10 Result: w̃2(k), optimized initial weights for backpropagation algorithm, for
k = 2, ..., L

11 begin
12 for k=2,...,L do // for each set of weights

13 for t = 0, 1, 2 do
14 w̃t(k) = (Q−1t (k) +R−1t (k))−1(k)(Q−1t (k)w−t (k) +R−1t (k)mt(k))
15 Qt+1(k) = (Q−1t (k) +R−1t (k))−1

16 w−t+1(k) = w̃t(k)
17 mt+1(k) = Rnd(−h, h) // Rnd(−h, h) random sampling in the

interval (−h, h)

18 (Rt+1(k))ii =
1

N(k)N(k − 1)

∑
x∈X ‖d

(k,x)‖2, ∀i

19 (Rt+1(k))lm = 0.7, ∀l,m

Measurements mt(k) are obtained by randomly sampling in the real interval
(−h, h), for all t. Usually the value of h depends on the specific problem where
neural net is applied. Then, we provide a sensitivity analysis on this parameter in
the discussion of the results.

The covariance matrix Rt(k) is a symmetric matrix whose entries outside the
main diagonal are set equal to 0.7. This choice is based on a sensitivity analysis
involving the Pearson coefficient (about correlations of weights) that improves per-
formance of our algorithm. In [8], diagonal entries of covariance matrices were used
to describe uncertainty of measurements. In our context, high values of (Rt(k))ii
reflect bad accuracy of (mt(k))i, i. e., this weight affects output of the neural net
being far from the desired output. Thus, we can use values of d(k,x) to measure
inaccuracy of mt(k) as follows:

(Rt(k))ii =
1

N(k)N(k − 1)

∑
x∈X

‖d(k,x)‖2, ∀i, ∀k,

where ‖ · ‖ stands for the Euclidean norm. Quantity ‖d(k,x)‖2 expresses distance
from output and desired output of k–th layer, given the input x. The sum over all
x ∈ X measures the total inaccuracy of the output of k–th layer. We divide by
the number of weights connecting neurons in layers k − 1 and k so that (Rt(k))ii
represents in mean the inaccuracy of a single weight connecting a neuron in layer
k − 1 with a neuron in layer k.

Finally, we iterate Eqs. (5) for a small number of times. Indeed, entries of Qt

7

rapidly decrease with respect to Rt by means of second equation in (5). Consequently
after a few steps, in first equation of (5), w−t has much greater weight than mt so
that improvements of w̃t could not be significative. In our simulations, we fixed a
threshold of tmax = 2 in order to reduce number of iterations of our algorithm (and
consequently number of operations) but obtaining a significant reduction of the step
number in the BP algorithm.

Remark 1. The computational complexity to implement the classical Kalman filter
is polynomial (see, e.g., [14] p. 226). Our customization described in Algorithm 2
is faster for the following reasons:

• it involves a less number of operations (matrix multiplications) than usual
Kalman filter;

• in the Kalman filter the most time consuming operation is given by the evalu-
ation of inverse of matrices. In our case, this can be performed in a fast way,
since we deal with circulant matrices, i.e., matrices where each row is a cyclic
shift of the row above it. It is well–known that inverse of circulant matrices
can be evaluated in a very fast way. Indeed, they can be diagonalized by using
the Discrete Fourier Transform ([13], p. 32); the Discrete Fourier Transform
and the inverse of a diagonal matrix are immediate to evaluate.

Thus, our algorithm is faster than classical Kalman filter, moreover it is iterated
for a low number of steps (tmax=2). Surely, Algorithm 2 has a time complexity
greater than random initialization. However, looking at BP Algorithm 1, we can
observe that Algorithm 2 involves similar operations (i.e., matrix multiplications or
multiplications between matrices and vectors) in a minor quantity as well as it needs
a smaller number of cycles. Furthermore, in the following sections, we will see that
weights initialization by means of Algorithm 2 generally leads to a noticeable decrease
of steps necessary for the convergence of the BP algorithm with respect to random
initialization. Thus, using Algorithm 2 we can reach a faster convergence, in terms
of time, of the BP algorithm than using random initialization.

4.2. Experiments on latin printed characters

In this section we train the neural network in order to recognize latin printed
characters using both BI and RI methods and we compare these results.

The set X of training inputs is composed by 26 characters of the alphabet for
5 different fonts (Arial, Courier, Georgia, Times New Roman, Verdana) with 12 pt.
Thus, we have n = 130 different inputs. The characters are considered as binary
images contained in 15×12 rectangles. Thus, an element x ∈ X is a vector of length
15 · 12 = 180 with components 0 or 1. Figure 1 shows an example of characters of
our dataset. A white pixel is coded with 0, a black pixel is coded with 1. The
corresponding vector is constructed reading the matrix row–by–row (from left to
right, from down to top).

For the experiment presented here, we use a neural net with L = 3 layers,
N(1) = 15 · 12 = 180, N(3) = 26. Conventionally, size of first layer is equal to
size of training inputs and size of last layer is equal to the number of different
desired outputs. In our case, last layer has 26 neurons, as the characters of the latin
alphabet. The desired output y(x) is the vector (1, 0, 0, ..., 0), of length 26, when
input x is the character a (for any font), is the vector (0, 1, 0, ..., 0) when the input
is the character b, etc.

8

Figure 1: Example of characters of the dataset: letter ”a”, font arial, pt 12; letter ”w”, font times
new roman, pt 12; letter ”j”, font georgia, pt 12

For comparison purposes, simulations are performed for different values of pa-
rameters N(2), h, and η. We recall that N(2) is the number of neurons in layer 2,
(−h, h) is the interval where weights are sampled, and η is the learning rate. To the
best of our knowledge these parameters have not a standard initialization, see, e.g.,
[31].

For each combination of N(2), h, η, we train the neural net with RI for 1000
different times and we evaluate the mean number of steps necessary to terminate
the training. Similarly, we evaluate the mean number of steps when weights are
initialized by the Bayesian weights initialization in Algorithm 2.

Figures 2 and 3 depict behavior of the mean number of steps that determine
convergence of the BP algorithm with RI, for N(2) = 70, 80, respectively. Each
figure reports on the abscissa different values of h and we show the behavior for
η = 0.6, 0.8, 1, 1.2, 1.4.

Figure 2: Convergence rate of backpropagation algorithm with random weight initialization with
N(2) = 70 applied to recognition of latin printed characters

9

Figure 3: Convergence rate of backpropagation algorithm with random weight initialization with
N(2) = 80 applied to recognition of latin printed characters

Figures 4 and 5 show same information for the BP algorithm with BI.

Figure 4: Convergence rate of backpropagation algorithm with Bayesian weight initialization with
N(2) = 70 applied to recognition of latin printed characters

10

Figure 5: Convergence rate of backpropagation algorithm with Bayesian weight initialization with
N(2) = 80 applied to recognition of latin printed characters

By figures 2 and 3 (RI), we can observe that for 0.5 ≤ h ≤ 1 number of steps,
which determine convergence of BP algorithm, generally decreases (with some fluc-
tuation) given any η. Moreover, increasing values of η produce an improvement in
the performances. However, such an improvement is less and less noticeable.

By figures 4 and 5 (BI), we can observe that for 0.5 ≤ h ≤ 1 performances of BP
algorithm improve, similarly to random initialization. For h > 1, number of steps,
which determine convergence of BP algorithm, increases but slower than the random
initialization case. Moreover, increasing values of η produce an improvement in the
performances, but it is less noticeable than the case of random initialization.

The improvement in convergence rate due to BI is noticeable at a glance in these
figures. In particular, we can see that BI approach is more resistant than RI with
respect to high values of h, in the sense that number of steps increases slower. In
fact, for large values of h, weights can range over a large interval. Consequently,
RI produces weights scattered on a large interval causing a slower convergence of
BP algorithm. On the other hand, BI seems to set initial weights on regions that
allow a faster convergence of BP algorithm, despite the size of h. This could be very
useful in complex problems where small values of h do not allow convergence of BP
algorithm and large intervals are necessary.

Moreover, these figures provide some information about optimal values for h and
η that should be reached around 1 and 1.4, respectively.

In Figures 6 and 7 performances of BP algorithm with BI and RI are compared,
varying η on the x–axis and using two different values for h, for N(2) = 70, 80,
respectively. Similarly, figures 8 and 9 compare BI and RI, varying h on the x–axis
and using two different values for η, for N(2) = 70, 80, respectively.

These figures show that generally BI determines an improvement of the conver-
gence rate of the BP algorithm.

In these simulations, the best performance of BP algorithm with RI is obtained

11

Figure 6: Comparison between Bayesian and random weights initialization with N(2) = 70 and η
varying on x–axis applied to recognition of latin printed characters

Figure 7: Comparison between Bayesian and random weights initialization with N(2) = 80 and η
varying on x–axis applied to recognition of latin printed characters

12

Figure 8: Comparison between Bayesian and random weights initialization with N(2) = 70 and h
varying on x–axis applied to recognition of latin printed characters

Figure 9: Comparison between Bayesian and random weights initialization with N(2) = 80 and h
varying on x–axis applied to recognition of latin printed characters

13

with h = 0.9 and η = 1.2, where the number of steps to terminate the training is
463. The best performance of BP algorithm with BI is obtained with h = 1.6 and
η = 1.4, where the number of steps to terminate the training is 339.

We can observe that for 0.4 ≤ η ≤ 1, BI improves the convergence rate with
respect to RI, given any value of h. Furthermore, the improvement of convergence
rate is more significant when h increases. For η = 1.2, BI produces improvements
only for h ≥ 1.2, but in this case we can observe that such improvements are
significant. For η = 1.4 and η = 1.6, BI produces improvements only for h = 1.4 and
h = 1.6. Such improvements are very significant both compared to corresponding
results obtained by RI and compared to results generally obtained by BI.

4.3. Experiments on handwritten digits

In this section, we train neural networks in order to recognize handwritten digits
in several cases. The benchmark is composed by handwritten digits of the MNIST
database. The MNIST database is composed by 60000 handwritten digits usually
used as training data and by 10000 handwritten digits usually used as validation
data. A handwritten digit is an image with 28 by 28 pixels (gray scale).

In the following our neural networks have N1 = 28 · 28 = 784 and NL = 10. The
desired output y(x) is the vector (1, 0, 0, ..., 0), of length 10, when input x is the digit
0; it is the vector (0, 1, 0, ..., 0) when the input is the digit 1; etc.

For the experiments here presented, we use different neural nets. Specifically,
we perform experiments for the following neural nets: L = 3 and the sigmoidal
activation function, L = 3 and the hyperbolic tangent activation function, L = 5
and the sigmoidal activation function, L = 5 and the hyperbolic tangent activation
function.

In the above situations, we compare convergence rate of BP algorithm with BI
and RI. The convergence rate is evaluated performing 100 different experiments (for
each method and situation) and computing the mean value of the steps necessary to
achieve the convergence. Moreover, we will also take into account accuracy obtained
by these methods testing the trained neural networks on the recognition of 10000
handwritten digits in the MNIST validation test.

In Figures 10, 11, 12 and 13 performances of BP algorithm with BI and RI
methods are compared training a neural net with 3 layers, for N2 = 70, on the
first 20000 images contained in the MNIST training set. Specifically, in Figures 10
and 11, we have set h = 1, varying η on the x–axis, and we have used sigmoidal
and hyperbolic tangent function, respectively. In Figures 12 and 13, we have set
η = 3.5, varying h on the x–axis, and we have used sigmoidal and hyperbolic tangent
function, respectively.

Figures 14, 15 and 16 show behavior of BP algorithm with BI and RI methods
for a neural network with 5 layers. We have set N2 = 50, N3 = 40, N4 = 80 (note
that this parameters have not been optimized, thus different deep neural nets could
obtain better performances). In Figures 14, 15, we vary h on the x–axis for η = 1.4
and η = 2.5, respectively. In Figure 16, we vary η on the x–axis for h = 1.4. For all
the above situations we have used the hyperbolic tangent as activation function.

These experiments confirm performances observed in the previous sections. In-
deed, BI generally determines an improvement of the convergence rate of the BP
algorithm with respect to RI.

14

Figure 10: Comparison between Bayesian and random weights initialization with L = 3, N(2) = 70,
h = 1.5, η varying on x–axis, sigmoidal activation function, applied to recognition of handwritten
digits of the MNIST database

Figure 11: Comparison between Bayesian and random weights initialization with L = 3, N(2) = 70,
h = 1.5, η varying on x–axis, hyperbolic tangent activation function, applied to recognition of
handwritten digits of the MNIST database

15

Figure 12: Comparison between Bayesian and random weights initialization with L = 3, N(2) = 70,
η = 3.5, h varying on x–axis, sigmoidal activation function, applied to recognition of handwritten
digits of the MNIST database

Figure 13: Comparison between Bayesian and random weights initialization with L = 3, N(2) = 70,
η = 3.5, h varying on x–axis, hyperbolic tangent activation function, applied to recognition of
handwritten digits of the MNIST database

16

Figure 14: Comparison between Bayesian and random weights initialization with L = 5, N(2) =
50, N(3) = 40, N(4) = 80, η = 1.4, h varying on x–axis, hyperbolic tangent activation function,
applied to recognition of handwritten digits of the MNIST database

Figure 15: Comparison between Bayesian and random weights initialization with L = 5, N(2) =
50, N(3) = 40, N(4) = 80, η = 2.5, h varying on x–axis, hyperbolic tangent activation function,
applied to recognition of handwritten digits of the MNIST database

17

Figure 16: Comparison between Bayesian and random weights initialization with L = 5, N(2) =
50, N(3) = 40, N(4) = 80, h = 1.4, η varying on x–axis, hyperbolic tangent activation function,
applied to recognition of handwritten digits of the MNIST database

In Figures 10 and 11, BI has a worst performance than RI only for η = 3.5 and
we can observe that we have significant improvement of convergence rate for low
values of η. Thus, in Figures 12 and 13 we have tested our method in situations
where it seems to have poor performances (i.e, for high values of η). Specifically we
used η = 3.5, varying h on x–axis from 0.6 to 1.4. In these simulations, the results
are good: for h ≤ 1.2 BI determines a faster convergence than RI. Moreover, let
us observe that best performances are generally obtained when η ≤ 3 and h ≤ 1.2
for both BI and RI. Thus, the use of high values of η and h is not suitable in this
context.

Figures 14, 15 and 16 show that BI method generally improves convergence rate
of BP algorithm also when deep neural networks are used. In this cases, we see that
when h increases, the distance between number of steps to achieve convergence with
BI and RI is more marked in favor of BI method.

Finally, in Tables 1 and 2 we have analyzed classification accuracy of neural
networks trained using the BI against RI.

In Table 1, we have tested neural networks in the recognition of the 10000 digits
of the MNIST validation set, when the training on the first 20000 digits of the
MNIST training set is terminated. In Table 2, we have tested neural networks in
the recognition of the 10000 digits of the MNIST validation set, after 300 steps of
training on the 60000 digits of the MNIST training set. We have chosen to perform
these simulations in order to highlight differences in terms of accuracy between BI
and RI methods. In the case of the MNIST database, if training is accomplished over
all the training dataset, then BP algorithm for multilayer neural networks yields a
very high accuracy (more than 99%, see, e.g., [7]) and consequently differences in
terms of accuracy are hard to see.

We can observe that percentage of recognized digits is generally greater when BI

18

L = 5, η = 1.5 L = 3, η = 3

Random in. Bayes in. Random in. Bayes in.

h Steps Perc. rec. Steps Perc. rec. Steps Perc. rec. Steps Perc. rec.

0.7 451 85 439 87 416 91 289 92

0.8 415 81 405 85 347 92 365 92

0.9 560 81 574 82 517 90 402 92

1 757 78 638 79 373 88 294 91

1.1 748 86 633 86 518 92 410 92

1.2 929 80 793 80 515 90 587 91

1.3 1219 82 1014 81 1425 85 1379 89

1.4 3896 77 1936 76 1473 81 1381 81

Table 1: Percentage of recognized digits in the MNIST validation set. Neural networks trained on
first 20000 digits of the MNIST training set.

L = 5, h = 0.8 L = 3, h = 1

η Random in. Bayes in. Random in. Bayes in.

0.5 92 92 90 91

1 92 95 91 94

1.5 95 96 94 93

2 93 95 93 93

2.5 92 96 95 94

3 90 88 95 96

Table 2: Percentage of recognized digits in the MNIST validation set. Neural networks trained for
300 steps on the MNIST training set.

is used. This result could be expected for simulations reported in Table 2, since after
the same number of steps the neural network with BI recognizes a greater number
of digits of the training step than neural network with RI (since, neural net with BI
converges faster than neural net with RI). Moreover, these results are also confirmed
in Table 1 where both neural net with BI and RI have terminated the training.

4.4. Comparison with other initialization methods

In this section, we compare performances of BI method with other ones. We
use results provided in [29], where several methods have been tested and compared
on different benchmarks from the UCI repository of machine learning databases.
Specifically, we perform tests on the following problems: Balance Scale (BAL),
Cylinders Bands (BAN), Liver Disorders (LIV), Glass Identification (GLA), Heart
Disease (HEA), Imagen Segmentation (IMA). The methods tested in [29] have been
developed by Drago and Ridella [9] (Method A), Kim and Ra [22] (Method B),
Palubinskas [27] (Method C), Shimodaira [33] (method D), Yoon et al. [40] (Method
E). Note that in [29] these methods are labeled in a different way.

In Table 3, we report the mean number of steps to achieve convergence with the
BP algorithm (30 different trials are performed). Results of Methods A, B, C, D, E
and RI are reported from [29]. The BI method is tested with h = 0.05 (since in [29]
weights are sampled in the interval [−0.05, 0.05]) and η = 2. Tables 4 and 5 also
provide the number of trials where algorithms do not achieve convergence and the
mean percentage of correct recognitions after training, respectively.

In terms of convergence rate, we can see that methods B and D have better
performances than BI method in Balance Scale problem, whereas only method D
converges faster than BI in Cylinder Bands and Liver Disorders problems. In the
remaining problems, BI method provides the best performances. On the other hand,
in these trials we can not observe significant improvements of the BI method with
respect to RI and other methods about mean percentage of correct recognitions

19

XXXXXXXXXXXMethod
Problem

BAL BAN LIV GLA HEA IMA

Meth. RI 120 800 1300 111 220 710

Meth. A 130 600 1600 230 200 1090

Meth. B 80 720 1300 150 320 1010

Meth. C 120 700 2800 160 430 950

Meth. D 80 470 500 91 290 970

Meth. E 270 800 2100 300 500 1040

Meth. BI 89 523 925 84 161 459

Table 3: Mean number of steps of backpropagation algorithm to converge with different initializa-
tion methods applied to different problems.

XXXXXXXXXXXMethod
Problem

BAL BAN LIV GLA HEA IMA

Meth. RI 1 11 3 3 4 5

Meth. A 1 5 4 3 4 5

Meth. B 0 8 1 2 3 4

Meth. C 0 8 3 2 4 5

Meth. D 0 4 0 2 2 7

Meth. E 0 5 4 7 3 11

Meth. BI 0 9 4 3 3 2

Table 4: Number of non–convergent trials for backpropagation algorithm with different initializa-
tion methods applied to different problems.

XXXXXXXXXXXMethod
Problem

BAL BAN LIV GLA HEA IMA

Meth. RI 91.8 66.8 59.4 90.4 81.2 72

Meth. A 90.6 67.7 60.9 88.2 80.8 70

Meth. B 91 66.9 60 88.9 81.7 70

Meth. C 91.1 68.3 60.8 90.7 80.6 74.7

Meth. D 91.7 68.5 63.1 91.9 81.7 76

Meth. E 91.4 65.3 61.3 85.7 80.9 59

Meth. BI 91.3 69.1 62.6 89.2 81.4 71.8

Table 5: Percentage of correct recognition after training by backpropagation algorithm converge
with different initialization methods applied to different problems.

20

and number of trials not achieving convergence. We can observe that BI method
generally improves RI, but the results of these tests can not be considered significant,
since similar results are reached.

We can observe that, as stated in [29], Method D needs determining several
parameters by a trial and error procedure. Indeed, here we only reported the best
performances of Method D obtained in [29], where the method is tested with several
different values of the parameters. On the contrary, BI method does not need tuning
extra parameters.

5. Conclusion and future work

In this paper, the problem of convergence rate of the backpropagation algorithm
for training neural networks has been treated. A novel method for the initialization
of weights in the backpropagation algorithm has been proposed. The method is
mainly based on an innovative use of the Kalman filter with an original metrological
approach. A simulation study has been carried on to show the benefits of the pro-
posed method with respect to random weights initialization, applying the neural net
in the field of the character recognition. Some comparisons with other initialization
methods have been performed. The obtained results are encouraging, and we expect
that the new features we introduced are actually relevant in a variety of application
contexts of neural nets. In particular, the Bayesian weights initialization could be
very useful to solve complex problems where weights need large values of h to ensure
convergence of BP algorithm. Looking at perspective advancements, the following
issues could be addressed in future works:

• values of entries of covariance matrix Rt(k) should be further optimized by
means of a deeper study on correlations among weights of neural networks;

• theoretical analysis of the convergence of the BP algorithm with BI, evaluating
and comparing the initial expected error of the neural network whose weights
are initialized with the Bayesian approach against the expected error due to
random initialization;

• application of the BI method to complex problems needing large values of h;

• recently, the greedy layer–wise unsupervised pre–training has been introduced
in order to achieve fast convergence for backpropagation neural networks [17],
[5], [12]; it could be interesting to compare this method with BI. Moreover, BI
could be exploited in order to improve the pre–training of this method. In fact,
the greedy layer–wise unsupervised pre–training involves several operations to
initialize the weights in the final/overall deep network. Moreover, the random
initialization of weights of neural nets is still the more widespread method.
Thus, the study of simple methods that improves random initialization, like
the Bayesian approach proposed here, is still an active research field.

6. Acknowledgments

This work has been developed in the framework of an agreement between IRI-
FOR/UICI (Institute for Research, Education and Rehabilitation/Italian Union for
the Blind and Partially Sighted) and Turin University.

21

Special thanks go to Dott. Tiziana Armano and Prof. Anna Capietto for their
support to this work.

We would like to thanks the anonymous referees whose suggestions have improved
the paper.

References

[1] S. P. Adam, D. A. Karras, M. N. Vrahatis, Revisiting the Problem of Weight
Initialization for Multi–Layer Perceptrons Trained with Back Propagation, Ad-
vances in Neuro–Information Processing, Lecture Notes in Computer Science,
Vol. 5507, 308–331, 2009.

[2] S. P. Adam, D. A. Karras, G. D. Magoulas, M. N. Vrahatis, Solving the linear
interval tolerance problem for weight initialization of neural networks, Neural
Networks, Vol. 54, 17–37, 2014.

[3] R. Asadi, N. Mustapha, N. Sulaiman, Training Process Reduction Based on
Potential Weights Linear Analysis to Accelerate Back Propagation Network,
International Journal of Computer Science and Information Security, Vol. 3,
No. 1, 229–239, 2009.

[4] R. Battiti, First– and Second–Order Methods for Learning: Between Steepest
Descente and Newton’s Method, Neural Computation, Vol. 4, 141–166, 1992.

[5] Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle, Greedy layer–wise training
of deep networks, Advances in Neural Information Processing Systems, Vol. 19,
153–160, 2007.

[6] BIPM, IEC, IFCC, ISO, IUPAC, IUPAP, and OIML Evaluation of measurement
data–guide to the expression of uncertainty in measurement (GUM 1995 with
minor corrections) JCGM 100: 2008.

[7] D. Ciresan, U. Meier, L. Gambardella, J. Schmidhuber, Deep Big Multilayer
Perceptrons for Digit Recognition, Lecture Notes in Computer Science, Vol.
7700, Neural Networks: Tricks of the Trade, Springer Berlin Heidelberg, 581–
598, 2012.

[8] G. E. D’Errico, N. Murru, An Algorithm for Concurrent Estimation of Time–
Varying Quantities, Meas. Sci. Technol., Vol. 23, Article ID 045008, 9 pages,
2012.

[9] G. P. Drago, S. Ridella, Statistically Controlled Activation Weight Initialization
(SCAWI), IEEE Transactions. on Neural Networks, Vol. 3, No. 4, 627–631,
1992.

[10] W. Duch, R. Adamczak, N. Jankowski, Initialization and Optimization of Mul-
tilayered Perceptrons, Proceedings of the 3rd Conference on Neural Networks,
Kule, Poland, 105–110, October 1997.

[11] D. Erdogmus, O. F. Romero, J. C. Principe, Linear–Least–Squares Initialization
of Multilayer Perceptrons through Backpropagation of the Desired Response,
IEEE Transactions on Neural Networks, Vol. 16, No. 2, 325–336, 2005.

22

http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf
http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf
http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf

[12] D. Erhan, Y. Bengio, A. Courville, P. A. Manzagol, P. Vincent, S. Bengio, Why
does unsupervised pre–training help deep learning?, The Journal of Machine
Learning Research, Vol. 11, 625–660, 2010.

[13] R. M. Gray, Toeplitz and circulant matrices: a review, Foundations and Trends
in Communications and Information Theory: Vol. 2, No. 3, 2006.

[14] C. Hajiyev, F. Caliskan, Fault diagnosis and reconfiguration in flight control
systems, Springer, 2003.

[15] F. Heimes, Extended Kalman filter neural network training: experimental results
and algorithm improvements, IEEE International Conference on Systems, Man,
and Cybernetics, Vol. 2, 1639–1644, 1998.

[16] S. Haykin, Kalman filtering and neural networks, John Wiley and Sons, Inc.,
2001.

[17] G. E. Hinton, R. R. Salakhutdinov, Reducing the dimensionality of data with
neural networks, Science 313.5786, 504–507, 2006.

[18] T. C. Hsiao, C. W. Lin, H. K. Chiang, Partial Least Squares Algorithm for
Weight Initialization of Backpropagation Network, Neurocomputing, Vol. 50,
237–247, 2003.

[19] S. J. Julier, J. K. Uhlmann, Unscented filtering and nonlinear estimation, Pro-
ceedings of the IEEE, Vol. 92, No. 3, 401–422, 2004.

[20] R. E. Kalman, A new approach to linear filtering and prediction problems,
Trans. ASME D, J. Basic Eng., Vol. 82, 35–45, 1960.

[21] T. Kathirvalavakumar, S. J. Subavathi, A new Weight Initialization Method
Using Cauchy’s Inequality Based on Sensistivity Analysis, Journal of Intelligent
Learning Systems and Applications, Vol. 3, 242–248, 2011.

[22] Y. K. Kim, J. B. Ra, Weight Value Initialization for Improving Training Speed
in the Backpropagation Network Proc. of Int. Joint Conf. on Neural Networks,
Vol. 3, 2396–2401, 1991.

[23] M. Kusy, D. Szczepanski, Influence of graphical weights interpretation and fil-
tration algorithms on generalization ability of neural networks applied to digit
recognition, Neural Comput and Applic, Vol. 21, 1783–1790, 2012.

[24] Y. Liu, J. Yang, L. Li, W. Wu, Negative effects of sufficiently small initial
weights on back–propagation neural networks, J Zhejiang Univ–Sci C (Comput
and Electron), Vol. 13, No. 8, 585–592, 2012.

[25] Y. Liu, C. F. Zhou, Y. W. Chen, Weight Initialization of Feedforward Neu-
ral Networks by means of Partial Least Squares, International Conference on
Maching Learning and Cybernetics, Dalian, 3119–3122, 13–16 August 2006.

[26] McCulloch, W. S. and Pitts, W. H. (1943). A logical calculus of the ideas im-
manent in nervous activity. Bulletin of Mathematical Biophysics, 5:115-133.

23

[27] G. Palubinskas, Data–driven Weight Initialization of Back–propagation for Pat-
tern Recognition, Proc. of the Int. Conf. on Artificial Neural Networks, Vol. 2,
851–854, 1994.

[28] M. Petrini, Improvements to the backpropagation algorithm, Annals of the Uni-
versity of Petrosani, Economics, Vol. 12, No. 4, 185–192, 2012.

[29] M. F. Redondo, C. H. Espinoza, Weight Initialization Methods for Multilayer
Feedforward, ESANN 2001 Proocedings – European Symposium on Artificial
Neural Networks, Bruges (Belgium), 119–124, April 2001.

[30] I. Rivals, L. Personnaz, A recursive algorithm based on the extended Kalman
filter for the training of feedforward neural models, Neurocomputing, Vol. 20,
279–294, 1998.

[31] R. Rojas, Neural networks. A Systematic Introduction., Springer. Berlin Hei-
delberg NewYork, 1996.

[32] N. N. Schrusolph, Fast Curvature Matrix–Vector Products for Second Order
Gradient Descent, Neural Computing, Vol. 14, No. 7, 1723–1738, 2002.

[33] H. Shimodaira, A Weight Value Initialization Method for Improved Learning
Performance of the Back Propagation Algorithm in Neural Networks, Proc. of
the 6th International Conference on Tools with Artificial Intelligence, 672–675,
1994.

[34] S. Singhal, L. Wu, Training multilayer perceptrons with the extended Kalman
algorithm, Advances in neural information processing systems 1, Morgan Kauf-
mann Publishers Inc., San Francisco, CA, 133–140, 1989.

[35] S. S. Sodhi, P. Chandra, Interval Based Weight Initialization Method for Sig-
moidal Feedforward Artificial Neural Networs, AASRI Procedia, Vol. 6, 19–25,
2014.

[36] G. Thimm, E. Fiesler, High Order and Multilayer Perceptron Initialization,
IEEE Transactions on Neural Networks, Vol. 8, No. 2, 349–359, 1997.

[37] T. M. Varnava, A. Meade, An initialization method for feedforward artificial
neural networks using polynomial bases, Advances in Adaptive Data Analysis,
Vol. 3, No. 3, 385–400, 2011.

[38] K. Watanabe, S. G. Tzafestas, Learning algorithms for neural networks with
the Kalman filters, Journal of Intelligent and Robotic Systems, Vol. 3, Issue 4,
305–319, 1990.

[39] Y. F. Yam, T. W. S. Chow, C. T. Leung, A New Method in Determining Initial
Weights of Feedforward Neural Networks for Training Enhancement, Nuero-
computing, Vol. 16, 23–32, 1997.

[40] H. Yoon, C. Bae, B. Min, Neural networks using modified initial connection
strengths by the importance of feature elements, Int. Joint Conf. on Systems,
Man and Cybernetics, Vol. 1, 458–461, 1995.

24

	Introduction
	Overview of Backpropagation training algorithm
	Bayesian weight initialization based on a customized Kalman filter technique
	Numerical results
	Parameters of weights initialization algorithm
	Experiments on latin printed characters
	Experiments on handwritten digits
	Comparison with other initialization methods

	Conclusion and future work
	Acknowledgments

