Esercizi sulla logica proposizionale

Docenti: Alessandro Andretta, Luca Motto Ros, Matteo Viale

Dipartimento di Matematica Università di Torino

Riepilogo: tavole di verità dei connettivi logici

$$egin{array}{c|c} \mathbf{P} & \neg \mathbf{P} \\ \hline \mathbf{V} & \mathbf{F} \\ \mathbf{F} & \mathbf{V} \\ \end{array}$$

$$\begin{array}{c|ccc} P & Q & P \wedge Q \\ \hline V & V & V \\ V & F & F \\ F & V & F \\ F & F & F \end{array}$$

$$\begin{array}{c|ccc} P & Q & P \lor Q \\ \hline V & V & V \\ V & F & V \\ F & V & F \\ \hline F & F & F \\ \end{array}$$

$$egin{array}{c|c|c|c} P & Q & P
ightarrow Q \\ \hline V & V & V \\ V & F & F \\ F & V & V \\ F & F & V \\ \hline \end{array}$$

$$\begin{array}{c|ccc} P & Q & P \leftrightarrow Q \\ \hline V & V & V \\ V & F & F \\ F & V & F \\ F & F & V \end{array}$$

Calcolare tavole di verità

Esercizio

Calcolare la tavola di verità di

$$A \wedge (B \rightarrow \neg A).$$

A	В	$\neg A$	$\mid B \rightarrow \neg A$	$\mid A \wedge (B \to \neg A)$
$\overline{\mathbf{V}}$	\mathbf{V}	F	F	F
\mathbf{V}	F V	F	\mathbf{V}	\mathbf{V}
V V F	${f V}$	\mathbf{V}	\mathbf{V}	\mathbf{F}
${f F}$	\mathbf{F}	\mathbf{V}	\mathbf{V}	\mathbf{F}

Calcolare tavole di verità

Esercizio

Calcolare la tavola di verità di P, dove P è la proposizione

$$(A \to B) \land ((C \leftrightarrow \neg A) \lor B).$$

A	В	\mathbf{C}	$A \rightarrow B$	$\neg A$	$C \leftrightarrow \neg A$	$(C \leftrightarrow \neg A) \lor B$	P
$\overline{\mathbf{V}}$	\mathbf{V}	\mathbf{V}	V	F	F	V	$\overline{\mathbf{V}}$
\mathbf{V}	${f V}$	${f F}$	\mathbf{V}	\mathbf{F}	\mathbf{V}	\mathbf{V}	\mathbf{V}
\mathbf{V}	${f F}$	${f V}$	\mathbf{F}	\mathbf{F}	${f F}$	\mathbf{F}	\mathbf{F}
\mathbf{V}	${f F}$	${f F}$	\mathbf{F}	\mathbf{F}	\mathbf{V}	\mathbf{V}	\mathbf{F}
${f F}$	${f V}$	${f V}$	\mathbf{V}	\mathbf{V}	\mathbf{V}	\mathbf{V}	\mathbf{V}
${f F}$	${f V}$	${f F}$	\mathbf{V}	\mathbf{V}	${f F}$	\mathbf{V}	\mathbf{V}
\mathbf{F}	${f F}$	\mathbf{V}	\mathbf{V}	\mathbf{V}	\mathbf{V}	\mathbf{V}	\mathbf{V}
\mathbf{F}	${f F}$	${f F}$	\mathbf{V}	\mathbf{V}	${f F}$	\mathbf{F}	\mathbf{F}

Riepilogo: tautologie, contraddizioni e soddisfacibilità

Tautologie

P è una **tautologia** se e solo se nella sua tavola di verità la colonna di P ha solo \mathbf{V} .

Contraddizioni

P è una **contraddizione** (o è **insoddisfacibile**) se e solo se nella sua tavola di verità la colonna di P ha solo F.

Soddisfacibilità

P è **soddisfacibile** se e solo se nella sua tavola di verità la colonna di P contiene almeno un V.

Osservazione

P è soddisfacibile se e solo se P non è una contraddizione.

P è una tautologia se e solo se $\neg P$ è una contraddizione.

Stabilire se P è tautologia/soddisfacibile/contraddizione

Esercizio

Stabilire se P è soddisfacibile/tautologia/contraddizione, dove P è la proposizione

$$((C \to A) \land \neg B) \to (A \lor B).$$

P è della forma $Q \rightarrow R$, dove

 $Q: (C \to A) \land \neg B$

 $R: \qquad A \vee B.$

P è tautologia/soddisfacibile/contraddizione?

A	В	С	$C \to A$	¬В	$\overbrace{(C \to A) \land \neg B}^{Q}$	$\overbrace{A \vee B}^{R}$	$\overbrace{Q \to R}^P$	
$\overline{\mathbf{V}}$	\mathbf{V}	\mathbf{V}	\mathbf{V}	\mathbf{F}	\mathbf{F}	V	\mathbf{V}	✓!
\mathbf{V}	\mathbf{V}	${f F}$	\mathbf{V}	\mathbf{F}	${f F}$	\mathbf{V}	\mathbf{V}	
\mathbf{V}	\mathbf{F}	${f V}$	\mathbf{V}	\mathbf{V}	\mathbf{V}	\mathbf{V}	\mathbf{V}	
\mathbf{V}	\mathbf{F}	${f F}$	\mathbf{V}	\mathbf{V}	\mathbf{V}	\mathbf{V}	\mathbf{V}	
${f F}$	\mathbf{V}	${f V}$	\mathbf{F}	\mathbf{F}	${f F}$	\mathbf{V}	\mathbf{V}	
${f F}$	\mathbf{V}	${f F}$	\mathbf{V}	\mathbf{F}	${f F}$	\mathbf{V}	\mathbf{V}	
${f F}$	\mathbf{F}	${f V}$	\mathbf{F}	\mathbf{V}	${f F}$	\mathbf{F}	\mathbf{V}	
\mathbf{F}	\mathbf{F}	\mathbf{F}	$ \mathbf{V} $	\mathbf{V}	\mathbf{V}	\mathbf{F}	\mathbf{F}	!

Le risposte sono:

P è soddisfacibile, dato che vi è almeno un ${\bf V}$ nella sua colonna della tavola di verità.

P non è tautologia, dato che vi è almeno un F nella sua colonna della tavola di verità

Riepilogo: conseguenza logica

La proposizione Q è **conseguenza logica** delle proposizioni P_1, \ldots, P_n , in simboli

$$P_1, \ldots, P_n \models Q$$

se e solo se nella tavola di verità costruita a partire da *tutte* le variabili proposizionali A, B, C, \ldots che compaiono in almeno una tra P_1, \ldots, P_n, Q accade che

in ogni riga in cui ciascuna delle formule P_1, \ldots, P_n ha valore V, anche Q ha valore V.

Stabilire se vale la relazione $P_1, \ldots, P_n \models Q$

Esercizio

Stabilire se $P,Q \models R$, dove

- ullet P è la proposizione B o A,
- ullet Q è la proposizione $\neg B \to C$,
- ullet R è la proposizione A \vee C.

$P,Q \models R?$

 $P: B \to A$

 $Q: \neg B \to C$

 $R: A \vee C$

			P	Q	R	
A	В	\mathbf{C}	$\overrightarrow{\mathrm{B} o \mathrm{A}}$	$\neg B \rightarrow C$	$\widetilde{\mathrm{A} \vee \mathrm{C}}$	
$\overline{\mathbf{V}}$	\mathbf{V}	\mathbf{V}	V	V	V	$\overline{\hspace{0.1in}}$
\mathbf{V}	${f V}$	\mathbf{F}	\mathbf{V}	\mathbf{V}	${f V}$	\checkmark
${f V}$	\mathbf{F}	${f V}$	\mathbf{V}	\mathbf{V}	${f V}$	\checkmark
${f V}$	\mathbf{F}	\mathbf{F}	\mathbf{V}	${f F}$	\mathbf{V}	
${f F}$	${f V}$	${f V}$	\mathbf{F}	\mathbf{V}	\mathbf{V}	
${f F}$	${f V}$	${f F}$	${f F}$	\mathbf{V}	${f F}$	
${f F}$	${f F}$	${f V}$	\mathbf{V}	\mathbf{V}	${f V}$	\checkmark
${f F}$	${f F}$	${f F}$	\mathbf{V}	${f F}$	${f F}$	

La risposta è $\widehat{\textbf{Sl}}$ perché in ogni riga in cui P,Q sono vere lo è anche R.

Stabilire se vale la relazione $P_1, \ldots, P_n \models Q$

Esercizio

Stabilire se $P, Q \models R$, dove

- \bullet P è la proposizione $\neg C$,
- Q è la proposizione $A \vee C$,
- R è la proposizione $A \to B$.

$P,Q \models R?$

 $P: \quad \neg C \qquad \qquad Q: \quad A \vee C \qquad \qquad R: \quad A \to B$

A	В	\mathbf{C}	\bigcap^{P}	$\overbrace{A \vee C}^Q$	$\overrightarrow{A o B}$	
$\overline{\mathbf{V}}$	\mathbf{V}	\mathbf{V}	\mathbf{F}	V	V	
\mathbf{V}	${f V}$	${f F}$	\mathbf{V}	${f V}$	${f V}$	\checkmark
\mathbf{V}	${f F}$	\mathbf{V}	\mathbf{F}	${f V}$	${f F}$	
\mathbf{V}	${f F}$	${f F}$	\mathbf{V}	${f V}$	${f F}$	- !
${f F}$	${f V}$	\mathbf{V}	\mathbf{F}	${f V}$	\mathbf{V}	
\mathbf{F}	${f V}$	\mathbf{F}	\mathbf{V}	${f F}$	\mathbf{V}	
${f F}$	\mathbf{F}	${f V}$	\mathbf{F}	\mathbf{V}	\mathbf{V}	
\mathbf{F}	\mathbf{F}	${f F}$	\mathbf{V}	${f F}$	\mathbf{V}	

La risposta è $\overline{\text{NO}}$ perché vi è almeno una riga, in questo caso la quarta, in cui P,Q sono vere mentre R è falso.

Riepilogo: equivalenza logica

La proposizione P è **logicamente equivalente** alla proposizione Q, in simboli

$$P \equiv Q$$
,

se e solo se nella tavola di verità costruita a partire da tutte le variabili proposizionali A,B,C,\ldots che compaiono in almeno una tra P e Q accade che

le colonne di P e Q hanno esattamente gli stessi valori di verità in ogni riga.

Stabilire se vale $P \equiv Q$

Verificare se

$$\underbrace{A \wedge B}_{P} \equiv \underbrace{\neg (A \to \neg B)}_{Q}.$$

A	В	$\overbrace{A \wedge B}^P$	¬В	$A \to \neg B$	$\overbrace{\neg(A \to \neg B)}^{Q}$	
$\overline{\mathbf{V}}$	\mathbf{V}	V	\mathbf{F}	F	V	$\overline{\checkmark}$
\mathbf{V}	\mathbf{F}	${f F}$	${f V}$	\mathbf{V}	\mathbf{F}	\checkmark
${f F}$	\mathbf{V}	${f F}$	${f F}$	\mathbf{V}	${f F}$	\checkmark
${f F}$	\mathbf{F}	${f F}$	\mathbf{V}	\mathbf{V}	${f F}$	\checkmark

 $P \equiv Q$ è verificato perché P,Q hanno gli stessi valori di verità in ogni riga.

Stabilire se

$$\underbrace{(A \vee B) \leftrightarrow C}_{P} \equiv \underbrace{(A \vee B) \wedge C}_{Q}.$$

				P	Q	
A	В	С	$A \vee B$	$(A \lor B) \leftrightarrow C$	$(A \lor B) \land C$	
$\overline{\mathbf{V}}$	\mathbf{V}	\mathbf{V}	V	V	V	$\overline{\checkmark}$
${f V}$	${f V}$	${f F}$	\mathbf{V}	\mathbf{F}	${f F}$	\checkmark
${f V}$	\mathbf{F}	${f V}$	\mathbf{V}	\mathbf{V}	${f V}$	\checkmark
\mathbf{V}	\mathbf{F}	${f F}$	\mathbf{V}	\mathbf{F}	${f F}$	\checkmark
\mathbf{F}	${f V}$	${f V}$	\mathbf{V}	\mathbf{V}	${f V}$	\checkmark
\mathbf{F}	${f V}$	\mathbf{F}	\mathbf{V}	\mathbf{F}	${f F}$	\checkmark
\mathbf{F}	\mathbf{F}	${f V}$	\mathbf{F}	\mathbf{F}	${f F}$	\checkmark
\mathbf{F}	\mathbf{F}	${f F}$	\mathbf{F}	\mathbf{V}	${f F}$	-!

 $P\equiv Q$ non è verificato perché P,Q non hanno gli stessi valori di verità in almeno una riga (l'ultima).